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The Role of Biological Innovation in Dairy

• Biological innovation is a key driver of agricultural productivity
(Olmstead and Rhode 2008).
• The model of the dairy sector for improving genetics was

prompted by two innovations:
– Artificial insemination (AI) =⇒ availability of genetics
– Herd testing associations =⇒ evaluation of genetics.

• Key actors: DHIA, CDCB (formerly AIPL), AI companies.

• Result: a nearly continuous gain in dairy cow milk yield every
year, 50% of which is attributed to genetics.
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How it Started

Source: AIPL
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The Result

Source: Devries, 2017
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What About Management?

• Issue: data used for estimating mean returns for different
genetics in dairy cows is observational data, which conflates
genetic performance with mangement and selection behavior.

• Genetic technology is not selected randomly: often adopted
strategically into environments or management styles where it
will do well (Grilliches 1957; Suri 2011).

• What implications might this have for the productivity increases
attributed to genetics in dairy? What role is “good selection”
playing in increasing farm productivity?
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Research Question

RQ: Does selection behavior drive heterogeneity in returns to dairy
cow genetics?

• We analyze dairy cow lactation records linked to the genetic
evaluations of their sires at the time they were chosen.

• We use the Correlated Random Coefficient model as a
framework for studying heterogeneity caused by input demand.

• We consider the importance of animal level selection in
addition to herd level selection behavior.
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An Example Bull

Source: Genex
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How to Evaluate Tupac
Tupac is evaluated with this model:

y = Xβ+ Zμ+ e

• The “animal model” explains some trait trait y as due to
management X and genetics Z.

• Greatest attention is given to modeling genetic relationships to
generate estimates of μ.

• Tupac does not randomly show up in herds, however,
generating bias in μ.

7/24



How to Evaluate Tupac

• Repeated choices of Tupac will update his “Predicted
Transmitting Ability” μ for different traits.

8/24



A Production Function with Variable Returns

We model the production function of cow i in herd j at time t with a
variable coefficient on their PTA “investment” zij: μij = μ̄+ μ̃ij

yijt = α1 + β1Xijt + μijzij + εijt

= α1 + β1Xijt + (μ̃ij + μ̄)zij + εijt

= α1 + β1Xijt + μ̄zij + (μ̃ijzij + εijt)

= α1 + β1Xijt + μ̄zij + νijt

• E(zijνijt) 6= 0, and IV will not consistently identify μ̄.

• Correlated Random Coefficients (Wooldridge 2015) will identify
under some strict linearity assumptions.
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The Econometric Model

First stage is the linear approximation of input demand using input
price w, a decision made at conception date t− m:

zij = α0j + γwt−m + β0Xijt + ηijt

yijt = α1j + μ̄PTAij + β1Xijt + ρη̂ijt + ψη̂ijt × PTAij + εijt

• IV assumptions:
– Assumption 1: Relevance (γ 6= 0)
– Assumption 2: Independence (E(wt−mεijt) = 0)

• CRC Assumptions
– Assumption 3: E(νijt|ηijt) = ρηijt

– Assumption 4: E(μ̃ij|ηijt) = ψηijt
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The Econometric Model

zij = α0j + γwt−m + β0Xijt + ηijt

yijt = α1j + μ̄PTAij + β1Xijt + ρη̂ijt + ψη̂ijt × PTAij + εijt

Estimation of μ̄ tells us the average effect in the data, μ̄+ ψ̂η̂ijt

recovers the “heterogeneous effect.”

• Hypothesis 1: ρ = 0, unobserved input demand unrelated to
production.

• Hypothesis 2: ψ = 0, unobserved input demand does not drive
heterogeneity in returns to genetics.

Including herd specific intercepts focuses specifically on uij,
animal-specific match quality.
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Collecting Data

• DHIA data has dairy cow trait production (fat and protein) with
their calving and birth dates.

• Using the CDCB website, we collected historical evaluations of
dairy sires and matched them to data to know the
characteristics at the time they were chosen.

• Class III component prices at time of selection are used to proxy
wt−m, as they are used in the “Net Merit” index to price the
traits (Vanraden et. al. 2018).
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Data Summary
Numbers of Records

Number

Herds 3,326
Sires 10,798
Sires w/ Company ID 2,295
Dairy Cows 474,585
Number of Lactations 699,839
Lactation Records 1,660,959
State Wisconsin
Period June 2011 - January 2015
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Data Summary
Covariates

Mean Std Dev
Continuous Variables
PTA Fat 28.79 27.12
PTA Protein 21.46 20.48
Proportion Milked 3x 0.59 0.49
Lactation Length 310.30 23.49
Herd Size 134.65 317.82
Binary Variables (%)
Holstein 94.61
Lactation Number
1 46.03
2 28.74
3 15.17
4 7.19
5 2.87
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Distribution of Chosen PTA’s in the Data
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Interpreting Results

• Theoretically, μ̄ = 1, which is perfect transmission of the trait
(Kearney et. al. 2014). The effect of management with genetics
is sometimes defined by how different μ̄ is from 1.

• First lactation cows and later lactation cows are analyzed
separately for reasons of “survival bias.”

• Robustness checks:
– Sire company dummies
– Alternative instruments
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Returns to Fat
All Lactations

(1) (2) (3) (4) (5)
OLS FE IV IV + FE CRC + FE

PTA Fat 0.672*** 0.609*** -2.097*** -4.233*** -4.235***
(0.0337) (0.0138) (0.430) (0.422) (0.135)

η̂ 4.793***
(0.135)

η̂× PTA Fat 0.00742***
(0.0000904)

N 1664086 1664086 1664086 1664086 1664086
adj. R2 0.343 0.557 0.234 0.243 0.559

Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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Returns to Fat
Across Production Cycles

(1) (2) (3)
All Lactations First Lactation Later Lactations

PTA Fat -4.235*** -2.758*** -3.136***
(0.135) (0.186) (0.326)

η̂ 4.793*** 3.231*** 3.779***
(0.135) (0.1862) (0.326)

η̂× PTA Fat 0.00742*** 0.00724*** 0.00785***
(0.0000904) (0.000117) (0.000139)

N 1664086 802191 861816
adj. R2 0.559 0.531 0.517

Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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Returns to Protein
All Lactations

(1) (2) (3) (4) (5)
OLS FE IV IV + FE CRC + FE

PTA Protein 0.481*** 0.406*** -0.346 -1.159*** -1.189***
(0.0340) (0.0113) (0.301) (0.227) (0.0835)

η̂ 1.636***
(0.0836)

η̂× PTA Protein 0.00920***
(0.0000934)

N 1664086 1664086 1664086 1664086 1664086
adj. R2 0.456 0.671 0.447 0.639 0.673

Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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Returns to Protein
Across Production Cycles

(1) (2) (3)
All Lactations First Lactation Later Lactations

PTA Protein -1.189*** -1.921*** 1.152***
(0.0835) (0.114) (0.144)

η̂ 1.636*** 2.336*** -0.677***
(0.0836) (0.114) (0.144)

η̂× PTA Protein 0.00920*** 0.00895*** 0.00949***
(0.0000934) (0.000123) (0.000139)

N 1664086 802191 861816
adj. R2 0.559 0.635 0.633

Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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Distributions of Coefficients
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Robustness Checks

• Use of alternative instruments changed the estimate for fat but
not for protein; average effect is likely not pinned down for fat.

• Including sire companies as covariates did not change the
results.

• Robust to using inverse hyperbolic sine transforms of all the
variables.

• Finding that ψ > 0 robust to all specifications.
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Conclusions

• Selection bias likely has a large effect, but effect on average
returns is inconclusive.

– Average effect here estimated as negative, but is not a robust
result.

– Modeling of traits may have to be done as a system.

• Positive selection into use of traits, at both animal and herd
level.

• Biological innovation happens in the synergy between
producers and the science community, not just in the lab.
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Thank you!

24/24


