

Quantifying Heterogeneous Returns to Adoption of Genetics:

The Case of the Dairy Industry

Brent Hueth, Jared Hutchins, and Guilherme Rosa

Economics of Research and Innovation in Agriculture - NBER

The Role of Biological Innovation in Dairy

- Biological innovation is a key driver of agricultural productivity (Olmstead and Rhode 2008).
- The model of the dairy sector for improving genetics was prompted by two innovations:
 - Artificial insemination (AI) \implies availability of genetics
 - Herd testing associations \implies evaluation of genetics.
- Key actors: DHIA, CDCB (formerly AIPL), AI companies.
- Result: a nearly continuous gain in dairy cow milk yield every year, 50% of which is attributed to genetics.

How it Started

Source: AIPL

The Result

Source: Devries, 2017

What About Management?

- Issue: data used for estimating mean returns for different genetics in dairy cows is **observational** data, which conflates genetic performance with mangement and selection behavior.
- Genetic technology is not selected randomly: often adopted strategically into environments or management styles where it will do well (Grilliches 1957; Suri 2011).
- What implications might this have for the productivity increases attributed to genetics in dairy? What role is "good selection" playing in increasing farm productivity?

Research Question

RQ: Does selection behavior drive heterogeneity in returns to dairy cow genetics?

- We analyze dairy cow lactation records linked to the genetic evaluations of their sires at the time they were chosen.
- We use the Correlated Random Coefficient model as a framework for studying heterogeneity caused by input demand.
- We consider the importance of animal level selection in addition to herd level selection behavior.

An Example Bull

TUPA	C {4}	TUPAC {4}			07/04/14 8	40 Reg. 312	\$25	1
Net Merit Cheese Merit Fluid Merit Daus. G Milk	CDCB PTA, AJ +\$522 69%Rel +\$528 +\$510 Herds G +1959 74%Rel	CA PTA, GENEX 8/2017 PTAT JUI''' JPI''' Fertility (SCR) PregCheck'''	+0.60 +2.9 +152 0.0 99	74%Rel 90%Rel 89%Rel	 Tank topping Unmatched C 	production FP		
Protein Fat CFP Prod. Life SCS LIV GI	+61 -0.04% +75 -0.08% +136 +3.0 +2.93 -0.7 41%Rel +1.3 57%Rel	HCR CCR Dtr. Pregnancy Rate EFI%	0.5 -1.5 -3.3 8.4%	50%Rel 61%Rel 62%Rel	Trait Stature Strongth Body Depth Dairy Form Rump Angle Thuri Width Rear Legs-Side Vw. Rear Legs-Side Vw. Foot Angle	Short Frail Shallow Tight Rib High Pins Narrow Posty Hock-In Low	AJCA-Irait Profile	Tall ST/ Strong 0.1 Deep NAA Open Rib 0.2 Siloped 0.2 Wide 0.1 Silckle 0.0 Silrajpht NA Staep 0.4
HARRIS X REN Sire JX SCHUL Dam FARIA BR 1-08 3056 aAa 465 DMS Beta-Casein A	IEGADE X VIBRANT TZ VOLCANO HARRIS OTHERS RENEGADE 2 d 2x 19,290m 5.1 9850 345135 1A2 Kappa-Casein A	(4) 15565 (3), VG-80% 13.6 702p lbs. B BBR 100			Feet & Legs Score Fore Udder Attach. Rear Udder Meight Rear Udder Width Udder Cleft Udder Oepth Front Test Piace. Rear Test Piace. Test Length Rear Test-Rear Rear Test-Rear	Low Low Low Narrow Wisk Deep Wide Short Wide Close	-1	High High High Strong 0.2 High 0.4 Wide 0.2 Strong 0.3 Strong 0.3 Close 0.4 Close 0.4 Close 0.4 Close 0.4 Back 0.3 Back 0.3

Source: Genex

How to Evaluate Tupac

Tupac is evaluated with this model:

 $y = X\beta + Z\mu + e$

- The "animal model" explains some trait trait y as due to management X and genetics Z.
- Greatest attention is given to modeling genetic relationships to generate estimates of μ .
- Tupac does not randomly show up in herds, however, generating bias in *μ*.

How to Evaluate Tupac

 Repeated choices of Tupac will update his "Predicted Transmitting Ability" μ for different traits.

A Production Function with Variable Returns

We model the production function of cow *i* in herd *j* at time *t* with a variable coefficient on their PTA "investment" z_{ij} : $\mu_{ij} = \bar{\mu} + \tilde{\mu}_{ij}$

$$y_{ijt} = \alpha_1 + \beta_1 X_{ijt} + \mu_{ij} Z_{ij} + \epsilon_{ijt}$$

= $\alpha_1 + \beta_1 X_{ijt} + (\tilde{\mu}_{ij} + \tilde{\mu}) Z_{ij} + \epsilon_{ijt}$
= $\alpha_1 + \beta_1 X_{ijt} + \tilde{\mu} Z_{ij} + (\tilde{\mu}_{ij} Z_{ij} + \epsilon_{ijt})$
= $\alpha_1 + \beta_1 X_{ijt} + \tilde{\mu} Z_{ij} + \nu_{ijt}$

- $E(z_{ij}\nu_{ijt}) \neq 0$, and IV will not consistently identify $\bar{\mu}$.
- Correlated Random Coefficients (Wooldridge 2015) will identify under some strict linearity assumptions.

The Econometric Model

First stage is the linear approximation of input demand using input price w, a decision made at conception date t - m:

$$z_{ij} = \alpha_{0j} + \gamma w_{t-m} + \beta_0 X_{ijt} + \eta_{ijt}$$

$$y_{ijt} = \alpha_{1j} + \bar{\mu} PTA_{ij} + \beta_1 X_{ijt} + \rho \hat{\eta}_{ijt} + \psi \hat{\eta}_{ijt} \times PTA_{ij} + \epsilon_{ijt}$$

- IV assumptions:
 - Assumption 1: Relevance ($\gamma \neq 0$)
 - Assumption 2: Independence $(E(w_{t-m}\epsilon_{ijt}) = 0)$
- CRC Assumptions
 - Assumption 3: $E(\nu_{ijt}|\eta_{ijt}) = \rho \eta_{ijt}$
 - Assumption 4: $E(\tilde{\mu}_{ij}|\eta_{ijt}) = \psi \eta_{ijt}$

The Econometric Model

$$z_{ij} = \alpha_{0j} + \gamma w_{t-m} + \beta_0 X_{ijt} + \eta_{ijt}$$

$$y_{ijt} = \alpha_{1j} + \bar{\mu} PTA_{ij} + \beta_1 X_{ijt} + \rho \hat{\eta}_{ijt} + \psi \hat{\eta}_{ijt} \times PTA_{ij} + \epsilon_{ijt}$$

Estimation of $\bar{\mu}$ tells us the average effect in the data, $\bar{\mu} + \hat{\psi}\hat{\eta}_{ijt}$ recovers the "heterogeneous effect."

- Hypothesis 1: $\rho = 0$, unobserved input demand unrelated to production.
- Hypothesis 2: ψ = 0, unobserved input demand does not drive heterogeneity in returns to genetics.

Including herd specific intercepts focuses specifically on u_{ij} , animal-specific match quality.

Collecting Data

- DHIA data has dairy cow trait production (fat and protein) with their calving and birth dates.
- Using the CDCB website, we collected historical evaluations of dairy sires and matched them to data to know the characteristics at the time they were chosen.
- Class III component prices at time of selection are used to proxy w_{t-m}, as they are used in the "Net Merit" index to price the traits (Vanraden et. al. 2018).

Data Summary

Numbers of Records

	Number
Herds	3,326
Sires	10,798
Sires w/ Company ID	2,295
Dairy Cows	474,585
Number of Lactations	699,839
Lactation Records	1,660,959
State	Wisconsin
Period	June 2011 - January 2015

Data Summary

Covariates

	Mean	Std Dev
Continuous Variables		
PTA Fat	28.79	27.12
PTA Protein	21.46	20.48
Proportion Milked 3x	0.59	0.49
Lactation Length	310.30	23.49
Herd Size	134.65	317.82
Binary Variables (%)		
Holstein	94.61	
Lactation Number		
1	46.03	
2	28.74	
3	15.17	
4	7.19	
5	2.87	

Distribution of Chosen PTA's in the Data

Interpreting Results

- Theoretically, μ
 ⁻ = 1, which is perfect transmission of the trait (Kearney et. al. 2014). The effect of management with genetics is sometimes defined by how different μ
 ⁻ is from 1.
- First lactation cows and later lactation cows are analyzed separately for reasons of "survival bias."
- Robustness checks:
 - Sire company dummies
 - Alternative instruments

Returns to Fat

All Lactations

	(1)	(2)	(3)	(4)	(5)
	OLS	FE	IV	IV + FE	CRC + FE
PTA Fat	0.672***	0.609***	-2.097***	-4.233***	-4.235***
	(0.0337)	(0.0138)	(0.430)	(0.422)	(0.135)
η					4.793***
					(0.135)
$\hat{\eta}$ × PTA Fat					0.00742***
					(0.0000904)
Ν	1664086	1664086	1664086	1664086	1664086
adj. R ²	0.343	0.557	0.234	0.243	0.559
Standard errors in parentheses					

Returns to Fat

Across Production Cycles

	(1)	(2)	(3)
	All Lactations	First Lactation	Later Lactations
PTA Fat	-4.235***	-2.758***	-3.136***
	(0.135)	(0.186)	(0.326)
η	4.793***	3.231***	3.779***
	(0.135)	(0.1862)	(0.326)
$\hat{\eta}$ × PTA Fat	0.00742***	0.00724***	0.00785***
	(0.0000904)	(0.000117)	(0.000139)
N	1664086	802191	861816
adj. R ²	0.559	0.531	0.517

Standard errors in parentheses

Returns to Protein

All Lactations

	(1)	(2)	(3)	(4)	(5)
	OLS	FE	IV	IV + FE	CRC + FE
PTA Protein	0.481***	0.406***	-0.346	-1.159***	-1.189***
	(0.0340)	(0.0113)	(0.301)	(0.227)	(0.0835)
η					1.636***
					(0.0836)
$\hat{\eta}$ × PTA Protein					0.00920***
					(0.0000934)
N	1664086	1664086	1664086	1664086	1664086
adj. R ²	0.456	0.671	0.447	0.639	0.673
Standard errors in parentheses					

Returns to Protein

Across Production Cycles

	(1)	(2)	(3)
	All Lactations	First Lactation	Later Lactations
PTA Protein	-1.189***	-1.921***	1.152***
	(0.0835)	(0.114)	(0.144)
η	1.636***	2.336***	-0.677***
	(0.0836)	(0.114)	(0.144)
$\hat{\eta}$ × PTA Protein	0.00920***	0.00895***	0.00949***
	(0.0000934)	(0.000123)	(0.000139)
Ν	1664086	802191	861816
adj. R ²	0.559	0.635	0.633

Standard errors in parentheses

Distributions of Coefficients

Robustness Checks

- Use of alternative instruments changed the estimate for fat but not for protein; average effect is likely not pinned down for fat.
- Including sire companies as covariates did not change the results.
- Robust to using inverse hyperbolic sine transforms of all the variables.
- Finding that $\psi > 0$ robust to all specifications.

Conclusions

- Selection bias likely has a large effect, but effect on average returns is inconclusive.
 - Average effect here estimated as negative, but is not a robust result.
 - Modeling of traits may have to be done as a system.
- Positive selection into use of traits, at both animal and herd level.
- Biological innovation happens in the synergy between producers and the science community, not just in the lab.

Thank you!