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Abstract

We discuss a unique approach to innovation and data governance in agriculture
using the dairy sector as a case study. One challenge of data governance is making data
available to firms for research while still preserving the rights of those who produce
the data. Data has become a powerful tool for innovation in agriculture, and most
of this data is now produced on the farm. We examine one institutional approach to
managing this trade-off used in dairy for nearly a century: cooperative data governance.
The National Cooperative Dairy Herd Improvement Program is a decentralized system
for collecting dairy farm data to produce valuable information on cattle genetics while
keeping ownership of the data in the hands of the farmer. After discussing its history, we
discuss how its evolution can inform data governance in agriculture today. The current
landscape of digital agriculture could benefit by emphasizing cooperative ownership,
setting uniform data standards, and decentralized operation that the NCDHIP has
pioneered for the past century.

1 Introduction

An emerging issue in the economy of data is data governance, which is the way in which a

firm or country manages the use and storage of data. Data is valuable to firms for conducting

research and spurring innovation, but the producers of data value privacy and a say in how

their data is used (Acquisti et al., 2016; Jones and Tonetti, 2020). Firms and data producers

are at odds when firms use data or even sell data in a way that the producers of the data do

not approve. How data can be used by firms to spur innovation and economic growth while
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retaining the rights of the data producer is a key question for data governance in the digital

economy.

This question is especially prescient in the agricultural sector. Historically, Land Grant

Universities (LGUs) have played a large role in agricultural innovation by producing data

from experiment stations. Thanks to innovations in precision agriculture technology, one

farm can potentially produce a quality and variety of data that can rival anything collected

from an experiment station (Coble et al., 2018). Data collection is now more decentralized

since this wealth of data is being collected by private firms which sell measurement technol-

ogy. Unfortunately, the rights of the farmer concerning the data they produce with these

technologies remain hazy and ill-defined (Carbonell, 2016; Ferris, 2017). Like many parts of

the economy, agriculture is need of a data governance model that can help realize the societal

benefits of data while also protecting the rights of the farmers that produce the data.

In this paper, we examine one agricultural industry in the United States which has

operated with such a data governance model for nearly a century. The National Dairy Herd

Improvement Program (NCDHIP) has been the primary data governance structure for data

on dairy cattle breeding in the United States since 1925. The NCDHIP is an agreement

agreement between dairy farms, genetics companies, and the USDA to collect, manage, and

analyze dairy farm data to alleviate information frictions in the market for bull genetics. The

system collects on-farm, animal-level production data from US dairy farms and shares the

data with USDA scientists who produce performance evaluations of the dairy bulls currently

for sale. The NCDHIP is an example of cooperative data governance since nearly every stage

of the collection, management, and use of the data is controlled by the producers of the

data themselves. The data collected by the system made large-scale research on dairy cow

breeding possible for nearly a century without sacrificing the rights of dairy farmers to their

own data.

The purpose of this article is to examine how the NCDHIP evolved in the dairy sector and

how the NCDHIP’s experience can inform data governance in agriculture today. The system
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evolved to address the information asymmetry in the market for dairy bulls. Due to the

decentralized nature of animal breeding, there has never been a central authority that can

feasibly provide information on all the dairy bulls a farmer might choose from. The NCDHIP

grew to replicate this central authority with a decentralized network of mostly farmer-owned

institutions with uniform standards for data collection. We outline three important phases

of its development: data collection, data standards, and data scaling. Through these phases,

the NCDHIP became an efficient mechanism for effectively crowdsourcing research on dairy

cow breeding. The system remains an important part of the dairy sector today.

The evolution of the NCDHIP illustrates three important lessons for governance of agri-

cultural data today. First, the NCDHIP is made up of primarily cooperative institutions, a

governance structure which alleviates frictions concerning privacy and data ownership. Giv-

ing farmers an ownership stake of the institutions collection data is a straightforward way

to assign ownership to the data while still providing a means for it to be shared with oth-

ers. Second, the NCDHIP set standards for how data would be collected, how performance

would be measured, and how individual cooperatives in the system were to be organized.

This allowed inter-operability of the data, a current issue with current on-farm data collec-

tion. Finally, the NCDHIP is a decentralized system which requires minimal government

involvement, making it significantly less costly than other government-led efforts to provide

information public goods. A decentralized system better fits the needs of agriculture today

given how much data collection is now happening on the farm.

Our discussion is at the cross-section of the study of institutions and the study of data in

the economy. Data governance is accomplished by institutions, that is sets of constraints to

determine property rights, rules of exchange, and ultimately transaction costs (North, 1991).

Aspects of data governance such as standards adoption and inter-operability are examples

of coordination problems that are often addressed with institutions (Antonelli, 1994; David

and Greenstein, 1990). Data governance is increasingly relevant given how important data

is in the modern economy. Data is a non-rival good which, like ideas or information has
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increasing returns when it is shared. (Akcigit et al., 2016; Jones and Tonetti, 2020; Romer,

1990; Stigler, 1961). Jones and Tonetti (2020) highlights how the institutional aspects of data

sharing have direct implications for economic growth and welfare. Using a macroeconomic

model, they conclude that the highest welfare is achieved when consumers own their data and

sell it to firms for research and innovation. Institutional frameworks are a key component of

translating the benefits of data collection, namely innovation, to society as a whole.

Our discussion brings this institutional angle to the current conversation concerning data

in agriculture. There is tremendous potential for digital agriculture to spur innovation in

the sector (Coble et al., 2018). At the same time, this optimism has been tempered by

concerns around privacy and ethics (Carbonell, 2016; Ferris, 2017; Kosior, 2020; Sykuta,

2016). This paper adds to the on-going discussion about data institutions in agriculture and

what governance models will maximize benefits to the sector (de Beer, 2016). The challenges

the NCDHIP faced bear similarities to today’s challenges, and it is critical to understand

successful models of data governance like the NCDHIP to face these challenges.

Our article proceeds as follows. The first section examines the conceptual framework for

understanding the role of the NCDHIP in facilitating learning through data collection. The

next section describes how the NCDHIP came to be as a joint effort between dairy farmers

and the USDA to further innovation in dairy cattle breeding. The third section describes

how the evolution and operation of the NCDHIP can inform current issues in data collection

and governance in agriculture today. The last section concludes.

2 Conceptual Framework

The main role of the NCDHIP is addressing information asymmetry in the market for dairy

cow genetics. The majority of discussion around adoption of genetic technology in agriculture

has focused on adoption of plant varieties (Ciliberto et al., 2019; Foster and Rosenzweig,

1995; Suri, 2011). Adoption and development of new animal “varieties,” as it turns out, is
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Table 1: Data Collection Time Across Sector

Type Time from breeding until first production data
Annual Plants 2 years 1 year to produce seeds

+ 1 year to harvest.

Dairy Cattle 5-8 years 10 month gestation
+ 2 years to producing age
+ average 3-5 years of production

Beef Cattle 2-3 years 10 month gestation
+ 1-2 years to slaughter.

Swine 10 months About 4 months gestation
+ 6 months to slaughter.

Broilers 3 months 1 month gestation
+ 2 months to slaughter.

Layers 2-3 years 1 month gestation
+ 6-8 months maturation
+ 1-2 years of production.

significantly more complex. In a textbook dating from 1946, Geneticist Arend Hagedoorn

said that animal breeding, compared to plant breeding, was “remarkably speculative and

economically wasteful” (Hagedoorn, 1946). The speculation and waste are in part because

animal breeding has never had the same centralized authority to provide information that

plant breeding has historically had.

Animal breeding has not had the same information infrastructure as plant breeding for

two reasons. First, acquiring information on new breeds is more time consuming for animals.

Many crop varieties can produce offspring in one year, meaning after creating a new variety

it will take two years to obtain data on its yield: the first year will produce seeds and the

second year will grow the new variety. For dairy farming, producing the same amount of

information would take at least five years. Table 1 shows the time it takes to produce new

information on breeds in each animal sector. Between hogs, beef cattle, layers, broilers and

dairy, dairy is by far the longest. Both LGU research and farmer experimentation is more

costly and time consuming for dairy cattle because of these biological constraints.

A second reason is that animal breeding is completely decentralized. Farmers tradition-

ally do not take an active role in plant breeding, instead letting LGUs or private companies
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find and prove new crop varieties. By buying seeds, crop farmers have perfect control over

which variety they use each year and do not need to engage in breeding. In contrast, dairy

farmers must breed cows every year to maintain production and produce replacement cows.

Since dairy farmers are always producing new, genetically distinct varieties, it would be in-

feasible for any LGU to prove all the dairy cow genetics that farmers might choose between

at an experiment station.

Without a centralized authority, the only option for dairy farmers is to learn from neigh-

bors or from their own experimentation. Both learning-by-doing and learning from social

networks are an important mechanism for farmers to learn about technology in the case of

crop varieties (BenYishay and Mobarak, 2019; Conley and Christopher, 2001; Foster and

Rosenzweig, 1995). However, they are less useful in dairy farming because the returns to

using one bull depend so much on the genetics the farm already has. In other words, a

neighbor’s signals are much noisier less informative in dairy farming (not to mention hap-

pen over a much longer time frame). To learn the same amount of information as a crop

farmer would from their neighbor, a dairy farmer would need significantly more neighbors.

The innovation of the NCDHIP is that it provides exactly the kind of information a LGU

would provide but does so by aggregating breeding experiments from all over the country.

Consider the Foster and Rosenzweig (1995) framework where a farmer is aiming to learn the

average, µ, and the standard deviation, σ, of a technology’s distribution. In this case, the

technology is a dairy bull that the farmer can breed with an existing cow use to obtain a

future replacement cow. The farmer can learn from neighbors who have used the same bull,

but the signals will take about five years to be realized (see Table 1). Even when the farmer

does observe the cow’s offspring, the signal is less informative because of all the private

information needed to understand it. About 25% of milk yield is determined by genetics,

and of this 25% half is determined by the mother of the cow (Herman, 1981, pg. 16). Both

management decisions and previous breeding decisions need to be known to disentangle the

effect of using that bull from its confounding factors. Since this is private information, it
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is unlikely that dairy farmers can effectively learn about genetics through their neighbors’

experimentation.

One solution to this problem is to somehow increase the number of neighbors that the

farmer can learn from. Intuitively, if the farmer can observe several of the bull’s offspring

in several different environments then they can estimate µ and σ with more precision and

less bias. An institution could accomplish this by collecting all the production data of that

bull’s offspring has and produce and publish empirical estimates µ̂ and σ̂. As the bull is used

in more environments, µ̂ and σ̂ could be updated to reflect any new information. In this

system, every time a farmer uses a bull for breeding every one of their neighbors would be

able to learn from their experimentation. This alleviates the information friction in choosing

dairy genetics by effectively crowdsourcing the necessary information from every other dairy

farm.

While this seems straightforward, such an institution would have to solve some key prob-

lems. How would µ̂ and σ̂ be estimated? How would farmers be incentivized to contribute

their data? Who would pay for the costs of data collection? Finally, who would ultimately

own and manage the data? In the next section we discuss the history of the NCDHIP and

how it solved these problems in pursuit of genetic improvement in dairy cattle.

3 The History of the NCDHIP

The NCDHIP, an institution addressing information asymmetry, was born in a market that

is famously fraught with information frictions: milk. In 19th century New England, a major

dairy producing region, watering down milk 25-50% before sale was considered an almost

universal practice (Olmstead and Rhode, 2008, pg. 344). Before the beginning of the 20th

century, milk was easy to adulterate, leading to badly aligned incentives for farmers and

processors. In this section we explore how the NCDHIP evolved to provide information

public goods in dairy by studying three major phases of its development: data collection,
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Table 2: Timeline of the NCDHIP

Phases of NCDHIP Evolution Main Events
Data Collection � 1890: Charles Babcock invents the Babcock butterfat test.

� 1895: Dairy Division in USDA formed.
� 1890: Charles Babcock invents the Babcock butterfat test.
� 1895: Dairy Division in USDA formed.
� 1905: First DHIA formed by Helmer Rabild in Michigan.
� 1906: First Bull Cooperative Association formed.
� 1908: Helmer Rabild employed by Dairy Division of USDA.
� 1914: Smith-Lever Act, Extension aids DHIA formation.
� 1917: Breeding research starts at the USDA.

Data Standards � 1924: ADSA develops testing guidelines for DHIAs.
� 1925: DHIA records used for proving sires.
� 1935: Nationwide ear-tagging system started by USDA.
� 1936: National Sire Proving Program started by USDA.
� 1937: USDA publishes its first “sire list.”

Data Scaling � 1933 (about): AI becomes commercially viable.
� 1938: First Cooperative AI Org is formed in New Jersey.
� 1946: National Association of Animal Breeders (NAAB) started.
� 1952: Official MOU between USDA and DHIA.
� 1953: Freezing technology for bull semen viable.

data standards, and data scaling. A timeline with key events can be found in Table 2. We

conclude the section by explaining how the NCDHIP operates today.

3.1 Data Collection

The data collection arm of the NCDHIP, called the Dairy Herd Improvement Associations

(DHIAs), formed in response to a new incentive created in the dairy market. Charles Bab-

cock, a chemist at the University of Wisconsin, invented a butterfat test for milk in 1890.

With the Babcock test, processors could monitor the extent to which dairy farmers adulter-

ated their product by testing the percentage of butterfat in the milk. As one politician put

it, the Babcock test “made more dairymen honest than the Bible ever had.” (Olmstead and

Rhode, 2008, pg. 344) Since milk buyers now had the ability to measure quality, this created

a drastic change in incentives not only for dairy farmers but also for animal breeders. Dairy

farmers were incentivized to breed cows that produced the most butterfat rather than the

most volume.
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Figure 1: DHIA Growth
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The DHIAs were cooperatives formed by dairy farmers to test the butterfat producing

ability of their cows. Helmer Rabild was a Danish immigrant working for the Michigan De-

partment of Agriculture when he organized the first DHIA, which he called a “cow testing

association,” in 1905 (Voelker, 1981). Rabild’s cooperative represented about 14 dairy farms

in Newago County, Michigan who together employed one milk tester to take monthly but-

terfat measurements of their cows using the Babcock test. The cooperative structure was

based on the milk testing cooperatives which had been forming for twenty years already in

his native Denmark. By the time Rabild formed the first US milk testing cooperative in

1905, there were 400 of these associations in Denmark (Rabild, 1911, pg. 6). The impetus

behind forming this cooperative was, at first, only to solve the information friction on the

farm. This information allowed farmers to know which cows to remove from the herd. What

they still lacked was the ability to tell which bull would produce the offspring they would

want as a replacement.

The USDA was quick to catch on to the importance of DHIAs. In 1908, the Dairy Bureau

within the USDA employed Rabild to form associations all around the country. With the
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Figure 2: Regional Trends in DHIA Growth

Source: Dairy Herd Improvement Letters, 1925-1980
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passage of the Smith-Lever Act in 1914, Rabild obtained the assistance of the Cooperative

Extension Service in his mission. Figures 1 and 2 show the rate of growth for DHIAs from

1906 until 1980. Nationally, the number of DHIAs grew until the middle of the 1950s when it

began to slowly decline. Conversely, the percentage of US cows enrolled in DHIAs follows a

roughly exponential growth pattern: slow growth until about 1945, but accelerating growth

onward. Regionally, the number of associations grew the fastest in the Midwest and the

Northeast, places where dairy farming already had a long history. The Midwest lagged

behind both the Pacific states the Northeast in terms of percentage of cows, however. The

Midwest experienced much lower growth in participation than practically any other region.

The Pacific region, where the majority of US dairy production would take place in the future,

had the highest percentage participation in DHIA even with very few associations.

The DHIAs incentivized participation by providing private benchmarking services which

were funded by fees paid by the farmer. Each DHIA was owned by its members, which also

elected the board of directors (Bureau of Dairying, 1925). After testing, dairy farmers would

be given a monthly report showing the butterfat production of each cow and how their cows

compared to other member farms. The testing also revealed how little dairy farmers actually

knew about the profitability of different cows. In his report to the USDA, Rabild mentions

that the cow farmers thought was the highest producing was often revealed to be one of the

poorest producing, highlighting the extent to which information frictions had plagued dairy

up to that point (Rabild, 1911, pg. 11).

While farmers could now find out which cow they might want to replace, how would they

know which cow they should replace it with? Before 1926, the DHIAs had only addressed

one part of the information friction. The USDA, however, saw potential for these farms to

address the information friction in selecting new animals. In 1917, the USDA began dairy

cow breeding research at the experiment farm in Beltsville, Maryland, which was in essence

the same centralized testing model used for crops (Voelker, 1981). As emphasized in the

previous section, animal breeding was not amenable to this model. By the time the USDA
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Figure 3: The First “Proved Sires” List

Source: List of Sires Proved in Dairy Herd Improvement Associations (1937), USDA Misc
Pub 277

would be able to prove one bull through experimental methods, several more bulls would

be adopted and used throughout the dairy sector. The USDA needed a system that could

prove genetics at the same pace dairy farmers were breeding.

Using the DHIAs, the USDA essentially crowdsourced animal breeding research by col-

lecting data on the breeding already happening across the country. Using DHIA records,

USDA scientists could determine which cows nationwide were producing the most butter-

fat. Since the breed associations kept detailed records of lineage, the scientists could also

determine which bull had sired the best producing offspring. In their first publication in

1937, the USDA listed the average “daughter difference” for each bull, meaning the average

difference between the production of the bull’s daughters and their mothers (see Figure 3).

While these estimates were still only rough estimates of a sire’s ability to produce productive

offspring, there were a milestone for the US dairy industry. For the first time, dairy farmers

had independently verified information on the productivity of different dairy bulls.

Participation in DHIA grew in parallel with the commercialization of the dairy sector.

Figure 4 shows that at about the same time that DHIA participation increased the number
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Figure 4: Dairy Cows and Participation in DHIA
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of dairy cows began to decline. Cows that used to live in the backyards of farm households

began to slowly move onto farms as dairy production became a specialized enterprise. By

1926, two name changes had been made to mark this new era in dairy. First, in 1924 the

Dairy Division of the USDA changes its name to the Bureau of Dairy Industry, reflecting the

industrialization of the dairy sector. Second, the “cow testing associations” in 1926 became

the Dairy Herd Improvement Associations, reflecting a new emphasis on genetic improve-

ment. The next challenge was how to facilitate the growth of this infant data cooperative

through coordination in data standards.

3.2 Data Standards

From 1924 to 1937, several efforts were made to coordinate standards in data collection and

sire evaluation that helped the NCDHIP grow. Standards are important to economic growth

and development in general, and perhaps more so in the case of data (David and Greenstein,

1990; Xu et al., 2012). Standardization is the only way a decentralized system can operate

effectively. To do decentralized breeding research with dairy cow records, all dairy farm data
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had to be collected and treated the same way. While standards often endogenously evolve

in economic sectors, the NCDHIP is a particular case where standards were coordinated

through both the USDA and the American Dairy Science Association (ADSA), a professional

association of dairy scientists. The efforts of the USDA and the ADSA set the foundation

for the growth of the NCDHIP by setting standards for data collection, DHIA governance,

and the evaluation of bulls.

The first meeting about data collection standards for DHIAs occurred in 1924 at an

ADSA annual meeting. The “Dairy Records Committee” was tasked with determining a

uniform set of rules across all DHIAs (Voelker, 1981). In their 1925 report, the ADSA

specified the equipment that each DHIA had to own, the way the Babcock test was to be

administered, the way the data was to be entered, and how the averages had to be calculated.

The recommendations of the committee even detail that every dairy farm must “agree to

furnish board and lodging for the man employed as tester for at least one day each month.”

(Bureau of Dairying, 1925, pg. 12)

The committee also provided sample by-laws and contracts that the DHIAs could use

for their governance structure. Farmers were to sign contracts with the DHIA to pay the

association annual fees in exchange for monthly testing services. The member farmers also

elected the board of directors who were usually required to be selected from the existing

members (Bureau of Dairying, 1925, pg. 3). The ADSA thought it necessary not only

to establish how data collection should be structured but also how each institution should

be structured. Standards in data collection were essential to aggregating data across the

country, and standards in institutional governance likely helped DHIAs work together more

effectively.

While the ADSA set standards for data collection, the USDA set standards for “sire

evaluations,” or what we referred to as µ and σ in the previous section. The Agricultural

Research Service (ARS) became the centralized authority for predicting the performance

of dairy bulls. As explained above, estimating µ and σ requires disentangling the effect of
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genetics from the effects of management from observational data. The goal of their research

was to isolate the contribution of the bull to its offspring’s productivity from its mother and

its environment. To achieve this goal, the USDA enlisted the talent of several influential

scientists. Sewall Wright, a scientist who is considered the father of population genetics,

worked at the USDA from 1915 until 1925 and helped lay the foundation for the study of

animal breeding at the USDA. Another influential scientist was Jay Lush, a geneticist who

advocated for a more scientific foundation to animal breeding based on data (Herman, 1981).

Lush’s work would pave the way for a statistician named Charles R. Henderson who would

develop the Henderson Mixed Model, a model which became the standard for data driven

animal selection.

In the first sire list published in 1937, the USDA adopted an intuitive metric for estimating

a bull’s productivity: the daughter-dam comparison (see Figure 3). The daughter-dam

comparison measures the difference in production between the bull’s mate (the dam) and the

bull’s offspring (the daughter). If this difference is positive, then the offspring outperformed

the daughter when that bull was used. For example, in Figure 3, the first bull in the list had

fat production rating of +38 since on average its daughters produced 38 lbs more fat than

their mothers This is a crude measure for netting out variation in production explained by

the bull, and was inadequate for indexing bull performance. The method completely ignored

the effect of the differing management environments of the daughters and mothers and did

not take into account that a mediocre bull could still have a large and positive index if it

was mated to an already low-producing cow.

Charles R. Henderson in the 1950s furthered research by comparing cows in the same herd

rather than cows with their mothers. Comparing cows in the same herd helped to control for

the effect of management and environment when comparing the offspring of different bulls.

Henderson eventually published one of the more influential models, the Henderson Mixed

Model (Henderson, 1975).1. The Henderson Mixed Model outputs a prediction of how well

1The Henderson Mixed Model is essentially a random effects model where the effects of bulls are modeled
as draws from a normal distribution. The normal distribution has a zero mean and a covariance matrix
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the bull will “transmit” its traits to its daughter as well a “reliability” score that indicates

the variance of the prediction. The first traits that were studied were milk yield and fat

yield, but in the future would be expanded to protein production, health traits, and fertility

traits.

Both the USDA and ADSA were instrumental in setting standards for data collection

and bull evaluation. The ADSA tackled how to make data flow across state boundaries

and through institutions, while the USDA used DHIA data to find new and better ways to

publish information on bulls. These efforts were vital to establishing the system because

they ensured that data could be collected from a variety of sources and that all bulls would

be compared the same way. A unique and critical aspect of the NCDHIP is its connection to

scientists through the ADSA and USDA who advised on and implemented these standards

to help the system work efficiently. It became a symbiotic relationship whereby scientists

obtained data for research through the DHIAs and the farmers received an information good

as an output of their research.

While bull proving was underway before 1933, scientists were still limited by the fact

that one bull could only produce so much offspring naturally. Without enough offspring per

bull, candidate estimates of µ and σ were likely to be very imprecise. The next step for

NCDHIP was to scale data collection, which was possible thanks to the commercialization

of both artificial insemination (AI) in 1933 and semen freezing in 1952.

3.3 Data Scaling

The introduction of artificial insemination (AI) and the freezing of semen both drastically

increased the volume of data collected by the DHIAs and the amount of data for doing

breeding research. Before AI, a bull could produce on average 12-13 female calves a year by

being physically present on the farm (Olmstead and Rhode, 2008, pg. 346). In AI, the bull

where the genetic relationships determine the pattern of covariance. There is also a “fixed” component to
the model which is the contemporary group fixed effects, which makes the regression a “mixed model.” For
a thorough review of animal evaluation models, see Gianola and Rosa (2015)

16



Figure 5: Use of AI for Breeding

Source: Herman (1981), pg. 37
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can be bred by multiple farms at the same time. With this method, bulls could produce 5,000

- 20,000 female calves a year, about a thousand-fold increase (Olmstead and Rhode, 2008,

pg. 346). After AI, any bull would have about a thousand more data points for estimating

evaluations. Figure 5 AI use over time which grew sharply after 1945.

Much like the DHIAs with the Babcock test, dairy farmers organized cooperatives to

take advantage of the new technology. The predecessors to AI cooperatives were “bull

associations” which acquired breeding stock and rotated the use of each bull throughout the

member farms. The first AI cooperative was formed in 1938 in New Jersey and by 1950

there were 1,500 AI cooperatives in the US (Herman, 1981; Olmstead and Rhode, 2008).

Unlike the DHIAs, the USDA was not involved in forming these cooperatives. However, like

the DHIAs, the ADSA from 1940 to 1943 laid out recommendations for how to organize an

AI cooperative (Herman, 1981, pg. 11). The AI cooperatives eventually formed their own

organization, the National Association of Artificial Breeders (NAAB), to collect information

on the best practices for good AI. The NAAB still exists today as the main governing body

of AI companies, the majority of which remain farmer-owned cooperatives.

AI allowed any farmer to use a bull in their association without excluding other members

from using it. However, farmer’s still could only choose bulls that were geographically in

their area because semen could not be transported long distances. If a bull was particularly

productive, the benefits would only be realized at the farms that were geographically close to

it. This changed with the commercialization of freezing technology in 1952 (Herman, 1981,

pg. 85). Once semen was able to be frozen, AI cooperatives could purchase semen from

nearly anywhere in the country. This both expanded the options of dairy farmers and also

allowed productivity spillovers across the country.

These two technologies, AI and freezing, led to a growth in bull data and a restructuring

of the dairy bull industry. Figure 6 shows the number of cows bred by each bull climbing

consistently from about 1944 as AI and freezing allowed one bull to be used anywhere in

the country. The dashed line indicates 1952, the year that freezing and transporting semen
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Figure 6: Growth in Cows Bred and Breeding Farms, 1938-1972
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became commercially viable. This parallels the drastic consolidation of AI cooperatives

which happened in the 1960s and 1970s. The number of “stud farms,” farms specialized in

producing dairy bulls for breeding, begins to decline after 1952. AI cooperatives in many

areas were formed to give local dairy farmers access to bulls, which was no longer necessary

with freezing (Herman, 1981, pg. 182).

3.4 Current Operation

The current NCDHIP system operates via a Memorandum of Understanding (MOU) signed

in 1952 between the USDA, the state extension service, and the DHIAs (Service, 1962;

Voelker, 1981). This MOU was the first official recognition of the relationship between these

institutions and each of their responsibilities in proving sires. The system now includes the

National DHIA and the Dairy Records Processing Centers as integral parts of the system.

The National DHIA was organized in 1965 to represent all of the DHIAs, which today have

been consolidated into just 15 associations covering the country. The data processing is
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Figure 7: The NCDHIP System Flow Chart
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(3) Offspring production data are collected by National DHIA and given to the DRPC.

(4) The DRPC analyzes the data to produce a ”benchmark report” for each DHIA member.

(5) The CDCB receives raw production data from the DRPC and lineage data from the Breed Associations.

(6) The CDCB produces an updated performance evaluation, µ̂ and σ̂, for the bull.
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handled by Dairy Records Processing Centers (DRPCs) which themselves are farmer owned.

Finally, the USDA ARS relinquished its responsibilities estimating sire evaluations in 2013

to the Council on Dairy Cattle Breeding, a member cooperative made up of the NAAB, the

DRPCs, the breed associations, and the National DHIA (CDCB, CDCB; Dairyman, 2013).

The current process for evaluating a bull is demonstrated in Figure 7. Suppose a bull has

an initial evaluation µ0 and σ0 and is sold by one of the members of the NAAB. After the

bull is adopted on several farms, the goal is to produce an updated evaluation µ̂ and σ̂ using

the data from these farms. Once the offspring begin producing milk, their data is collected

by individual DHIAs and sent to the DRPC. The farmer receives their only direct benefit, a

benchmarking and analysis report from the DRPC, at this stage. The DRPC then gives the

production data to the CDCB for calculation of evaluations. In order to determine which

bull sired the cows in DHIA, the CDCB receives lineage data from the breed associations.

The CDCB analyzes the production and lineage data together to produce an evaluation for

that bull on a number of traits. In the last stage, the NAAB uses the updated evaluation

m̂u and σ̂ to market the bull to farms. The evaluations are publicly available for any bull

and are used by NAAB members to market and price different bulls. Through this system,

the entire dairy sector benefits from the innovation drive by collection of farm data.

In terms of governance structure, the majority of the members of the NCDHIP are owned

by dairy farmers in some capacity. The NAAB is historically made up of AI cooperatives

and the majority of NAAB members today are still owned by dairy farmers. All the DHIAs

are owned by farmers and so are most of the DRPCs. The breed associations are also

owned by farmers and are collectively represented by the Purebred Dairy Cattle Association

(PDCA). As stated before, the CDCB is an organization whose members include many of

the above. The only parts of the system not directly owned by dairy farmers are the USDA

ARS and the extension service. The USDA ARS maintains a relationship with the CDCB

via a Non-funded Cooperative Agreement and remains engaged in breeding research with

the CDCB.
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Figure 8: DHIA Testing Participation, 1960-2019
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In terms of current participation, about 45% of US dairy cows are enrolled in National

DHIA. Figure 8 shows the percent of all cows on the “Official Plan” and the “Non-Official

Plan” for different years between 1960 and 2019. The “Official Plan” requires a tester to

come to the farm to collect the milk samples for analysis while in the “Non-Official Plan”

the farmer collects the milk samples themselves and sends it to the DHIA lab for analysis.2

Since only “Official Plan” measurements are supervised, these are the only records included

in the bull’s evaluation. Both plans grew until about 1996, after which participation in the

Non-Official Plan has dropped from 10% to 5%. Participation in the Official Plan grew to

41% in 2016 before declining to about 38% in 2019.

These trends demonstrate that farmer participation remains somewhat strong in the sys-

tem. Unlike in 1960, there are a variety of firms today that can provide data analysis services

for dairy farms in direct competition with the National DHIA. This may have been one factor

2The Non-Official Plan came about as a result of labor shortages in the 1940s for DHIA testers. The
Non-Official Plan is also cheaper than the Official Plan since less labor is needed.
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in the decline in participation in the Non-Official Plan. Despite growing competition, par-

ticipation in the Official Plan has not drastically changed since 2006. If the private benefits

of participating in National DHIA can easily be found outside the system, it seems likely

farmers would not be incentivized to contribute to the public good the NCDHIP provides.

Instead, the long history that dairy farmers have with the NCDHIP likely has engendered

institutional trust which helps keep participation strong.

4 Lessons Learned from the NCDHIP

The evolution of the NCDHIP was only possible through several research and technological

innovations: the Babcock test, innovations in statistical modeling, artificial insemination,

and freezing technology. However, technological innovations do not necessarily result in

broader innovations benefiting the whole dairy sector. One reason the NCDHIP was able to

translate these innovations into benefits for all dairy farmers was the institutional underpin-

nings of the system. DHIAs and most of the NAAB members are farmer-owned, which allows

dairy farmers to have direct control over how their data is used and who it is shared with. In

order to maximize the benefits from aggregating data, both government and non-government

scientists have helped develop data standards and evaluation methods to streamline research

in dairy cow breeding. Finally, the decentralized nature of the system helps it obtain data

from a variety of sources with little cost to taxpayers.

In this final section we discuss how these institutional underpinnings can inform data

governance in agriculture today. With precision agricultural data becoming easier to collect,

there are opportunities to realize benefits from these data never before possible. Institutions

determine the extent of the benefits as well as how they are distributed. Data collection

in agriculture has become increasingly decentralized, which makes the NCDHIP a relevant

case study for seeing how institutions can efficiently realize and distribute the benefits of

data aggregation. Three policy relevant attributes of NCDHIP are cooperative ownership,
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uniform data standards, and decentralization.

4.1 Cooperative Ownership

Who owns and has rights over data is one of the biggest questions concerning data today.

High-profile companies engaged in data collection have often engendered bad faith with data

producers by selling and using data in a way the producers of the data do not approve. Part

of the reason for these problems is that the rights of the data producer are often ill-defined.

Since data producers do not always own what they produce, they have little legal recourse

when the data collection firm acts in bad faith.

The NCDHIP avoided this problem by having the farmers own the organization that

collects and manages the data. When the Babcock test was invented, the collection of milk

data was owned and organized by farmers from the very beginning. The DHIAs and the

DRPCs have provided a platform for both processing the data and sharing the data with

scientists conducting research in animal breeding. The National DHIA represents all of

the DHIAs and has the authority to form data sharing agreements with universities and

researchers who wish to use dairy farm data collected by the DHIAs. By managing the data

through these cooperative institutions, the farmers retain their property rights to their data

and still have a mechanism for sharing it with the scientific community.

Data cooperatives can help to manage the trade-off between data use and privacy in

other agricultural sectors as well. In a legal landscape where rights over data are not defined,

cooperative ownership can be used to better establish these rights (Carbonell, 2016; Ferris,

2017). Organizations like Ag Data Transparent have made great strides in opening up the

conversation on data rights, but such voluntary agreements may still not be enough. Until the

legal framework around agricultural data changes, cooperative ownership can provide much

needed clarity in data ownership that farmers may be needing. Block chain technology makes

it even less costly to store data while maintaining privacy and doing so without the need

for a centralized intermediary (Davidson et al., 2018; Paik et al., 2019). Using cooperative
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governance, farmers can both reap the private benefits of their data as well as the indirect

benefits from researchers using their data.

4.2 Uniform Data Standards

Adoption of standards is vital for data sharing and realizing the gains of data aggregation.

Agriculture faces issues in data standardization because i) agricultural data is complex and

multi-facted and ii) precision agriculture data collection currently happens through several,

independent private firms. Agricultural data is multi-faceted because it is now acquired

through surveys, satellites, written records, and increasingly through a number of differ-

ent on-farm sensors. Universal, standardized data formats and protocols are needed to be

able to aggregate these data sources for analysis, standards agriculture is currently lacking

(Anderson et al., 2013; Bahlo et al., 2019). In the absence of a universal data standard,

private firms which collect data through precision agriculture technology must invent their

own standards. Since the major data collection firms do not manage or collect data in the

same way, it is difficult if not impossible to aggregate data from these disparate sources.

The NCDHIP faced a similar issue after DHIAs formed. Data collection happened

through thousands of cooperatives across the country who likely all had their separate ways

of collecting and storing data. The ADSA played a vital role in making sure both data

standards and institutional governance were uniformly defined across the system. Because

the ADSA was a professional organization, it could draw on the necessary technical exper-

tise to design standards and change them as needed. The system also received technical

expertise from Land Grant scientists, extension agents, and the USDA ARS. The ARS was

particularly important since it was responsible for storing DHIA data until the CDCB took

over its responsibilities.

Agricultural data could benefit from leadership in data standards to enhance the sharing

and use of precision agricultural data. Many efforts are underway to make agricultural data

more interoperable, including OpenTEAMS and AgStack. Yet, these efforts may fail to
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result in coordination if there is not strong leadership in setting these standards. This kind

of coordination may not arise endogenously, and the agricultural sector may need something

akin to the ADSA to begin the process of setting data standards. Like many standards,

there will likely be increasing returns to scale of adoption since it will lower transaction costs

substantially. Open standards are a good start given how much the open-source community

has contributed to standards and protocols in software development. The trick is initiating

the coordination, which may necessitate strong leadership from industry groups, the USDA,

or ideally a partnership of industry and government like the NCDHIP had.

4.3 Decentralization

Decentralization can also be an incredibly effective institutional structure with current tech-

nology. The modern economy is full of examples of internet platforms being used to crowd-

source geospatial data (OpenStreetMap), general knowledge (Wikipedia), and software de-

velopment (GitHub). Data contributors being geographically disparate no longer matters

with current technology the way that it did when the DHIAs were formed. Decentralization

can not only be effective for collecting data and conducting research but is even less costly

with current technology.

Decentralization is a key aspect of the NCDHIP which is relevant to today. The original

reason for decentralization in the NCDHIP was simply that dairy farmers were geographically

spread out. The technology did not exist to govern and administer a dairy benchmarking

program in a centralized way, and doing so would have been prohibitively costly. Because

the DHIAs were farmer owned, the system was always run as a partnership between dairy

farmers, scientists, and the government and never as a top-down government program. As

a result, the system costs taxpayers less and allows dairy farmers say in how the program

operates (through the National DHIA and their membership in the NAAB).

The agricultural sector would benefit from leveraging data from across US agriculture

by making use of new technology for coordination used already in crowdsourcing models.
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Since much of the data can be used to produce research useful to the sector as a whole,

the data would ideally be open access to allow as many researchers as possible to use it

(after establishing safeguards for privacy). Some examples of crowdsourcing research via

decentralized data collection are MIDATA and SALUS COOP for health research, both

of which are themselves cooperatives. The “citizen science movement,” a movement which

seeks to engage everyday people in collecting data for scholarly research, may also have useful

insights for engaging farmers in helping crowdsource agricultural research. Cultivating and

curating this kind of data resource would be a tremendous benefit to the sector as a whole.

5 Conclusion

The recent innovations in on-farm measurement technology have revolutionized how farm

operations can be run. Information previously unknown to the farm operator can now be

integrated into management, which will likely lead to productivity improvements in agricul-

ture. The benefits of digital agriculture can be beyond what happens on the farm, however.

Data from farms can be a resource for furthering research and innovation beyond the farm.

The past model of collecting data for research at experiment station plots at LGUs is less

relevant in a world where the bulk of data collection happens on the farm. Moreover, inno-

vation may be stifled if farmers do not have rights to how their data is used or a say in how

the data is governed (Jones and Tonetti, 2020).

The example of the NCDHIP shows how innovation can flourish even when data collection

is decentralized. Like many farmers today, dairy farmers were given a measurement technol-

ogy, the Babcock test, which could provide vital information about their operations. Their

data collection proved to be an enormous asset to the dairy sector as a whole thanks to the

organization efforts of dairy farmers, the USDA, and other industry actors. The NCDHIP is

an example for how on-farm data collection can benefit farmers, encourage innovation, and

address privacy and property rights in data. Institutions that practice this kind of coopera-
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tive data governance while partnering with the scientific community merit further study in

the field of economics. These kinds of institutions demonstrate that innovation and research

through data collection and protecting privacy and property rights need not be trade-offs at

all.
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