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Abstract

Dairy farmers in the United States routinely cull animals before asset replacememt
models claim is profit maximizing. This paper examines cow replacement decisions on
over 1,000 Wisconsin dairy farms during the period 2011-2014 to discern whether un-
expected cow mortality drives replacement decisions. Since animal replacements must
be procured ten months in advance in dairy, unexpected asset failure can incur large
costs on dairy farms and may encourage early replacement before animal health de-
clines. I model the choice as a dynamic discrete choice problem and estimate the model
parameters while taking into account unobserved, fixed cow heterogeneity. Using the
conditional choice probability method paired with machine learning, I estimate the cost
of mortality at 2,300 USD per death. This is more than twice what is calculated from
simulations, which suggests dairy cow replacement models are at odds with producer
behavior because they have underestimated the costs of declining animal health. Uti-
lizing farm size heterogeneity, I also find that mortality costs are three times higher on
small dairies than on larger ones. Though dairy breeders have prioritized production
over health in past decades, these estimates suggest that breeding instead for health
and longevity can generate significant cost savings for dairy producers.

Keywords: Dynamic Discrete Choice, Dairy, Asset Replacement, Investment Behav-
ior
JEL Codes: C61, D25, Q12, Q16
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1 Introduction

Dairy farms in the United States routinely cull animals before the economics and dairy

science literatures claim is optimal. Asset replacement simulations which take into account

prices and the management environment suggest keeping cows longer to maximize profit;

despite this, dairy farmers have maintained consistently high rates of turnover in their herds

by replacing earlier than considered optimal (De Vries, 2013; Van Arendonk, 1988). As a

result, dairy cows in the United States on average live to be only about five years old, 25%

of their potential lifespan (De Vries, 2013). The consequences of shorter dairy cow lifespan

potentially go beyond the farm’s bottom line, however. Dairy farms that maintain short

cow life also have higher GHG emissions, since more replacement cows must be kept on

hand when replacement rates are high (Garnsworthy, 2004; Weiske et al., 2006). While the

benefits of keeping cows longer seem clear to scientists, it is not known what motivates dairy

farmers to consistently replace earlier. What economic rationale could there be, if any, for

such a pattern of asset replacement?

I investigate whether the costs of “unplanned mortality,” an event where an animal un-

expectedly becomes inoperable and has to be removed from production, account for high

replacement rates on Wisconsin dairies. Since dairy cow health declines with age, I explore

the extent to which the costs incurred from this type of unexpected exit incentivize dairy

farmers to replace cows early as a way of avoiding these costs. To test this hypothesis, I de-

velop and estimate a dynamic discrete choice model of dairy cow replacement using a unique

dataset of cow-level production and replacement records on more than 1,000 Wisconsin dairy

farms. The empirical model estimates the parameters of the dairy farmer’s profit function

and is one of the few asset replacement models to incorporate asset-specific heterogeneity

into the estimation. Using the conditional choice probability method paired with machine

learning, I calculate the costs of unplanned mortality as 2,300 USD per event, 130% higher

than what has been previously estimated from simulations. My results suggest that part

of the reason dairy farmers do not practice what is considered “optimal” is that previous
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models have not incorporated or at least underestimated the costs incurred from dairy cows

being removed for reasons of poor health. Utilizing farm-size heterogeneity in the dataset, I

also find that unplanned mortality costs are almost three times higher on small dairies than

on larger dairies. I conclude by calculating producer willingess-to-pay to eliminate mortality

in the dataset, finding that on average farms in this sample would pay about 1,900 USD

to eliminate unplanned mortality for new cows, 500 USD more than the average cost of a

new heifer. While in the past dairy cow genetics have been oriented towards production

over health to increase farm profitability, these estimates suggest that breeding instead for

animal health and longevity could generate large cost savings for dairy producers, especially

smaller dairy farms.

The US dairy sector has been subject to historically low milk prices in the past decade,

which has made the question of what sorts of management practices are the most “prof-

itable” more relevant than ever to producers. Many dynamic programming models have

been calibrated to calculate the replacement policy that maximizes profit (Arendonk and

Dijkhuizen, 1985; Stewart et al., 1977), but these models continue to be odds with what is

actually practiced on dairy farms. To understand this discrepancy, I take an empirical ap-

proach akin to Rust (1987) and Miranda and Schnitkey (1995) which uses dynamic discrete

choice to estimate the cost parameters of the decision directly from observed replacement

decisions. This approach is different than the default approach of the dairy science literature

which often prescribes culling rules for farmers by assuming the costs they face rather than

inferring these costs from data (Arendonk and Dijkhuizen, 1985; De Vries, 2013). This paper

builds off of Miranda and Schnitkey (1995), the first paper to use dynamic discrete choice to

study dairy cow replacement, which could not rationalize the high rates of culling observed

on dairies. Their results found that a sizable portion of benefits to culling cattle at early

ages accumulated in an intercept term, which they term a “culling premium.” As such, the

main benefits to culling cattle were unexplained by the states in their model.

I explicitly model one possible cause of replacement to explain their results: unplanned
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animal mortality. On dairy farms, production downtime is minimized by planning ten months

in advance whether a cow will stay in the herd or be replaced by a new animal. This is due to

fact that a dairy cow cannot begin producing milk until it has given birth, which it can only

do if it is bred ten months before hand. Unplanned mortality is an event where the current

cow must exit in the middle of its production cycle, either because of death or a health

problem that forces the dairy farm to send the animal to slaughter immediately.1 This is

equivalent to an asset or machine breaking down in the middle of production but, unlike

other enterprises, dairy farms are subject to biological constraints that limit their ability to

fill this vacancy in the event of a failure. For example, if an animal that was supposed to

produce for ten more months dies two months into its cycle, there will be eight months of

lost revenue before its replacement will start producing. In addition to this lost revenue,

there are high costs of disposal and health treatment that are incurred from having a sick

or injured animal; Heikkilä et al. (2012) and De Vries (2013) use dynamic programming

simulations and calculate these costs to be in the range of 500-1,000 USD per exit. Facing

these costs, dairy farmers may replace cows early to avoid paying the penalty of both lost

revenue and disposal costs associated with an animal becoming unexpectedly inoperable.

Unplanned mortality has become even more important to dairy farm decision making

given trends in dairy genetics which have favored production over health and longevity.

While dairy cows have become more and more productive over the past decades, these

improvements have come at the cost of health; dairy cow lifespan has decreased 20% since

1960, in part because of increases in metabolic disease and infertility which forces animals

to be removed from the herd earlier and earlier (De Vries, 2017). Given these trends, a

conversation has begun in dairy whether these decreases in health in favor of production

are truly in the best interest of producers (De Vries, 2013; Knaus, 2009). In addition to

potentially harming profitability, shortened dairy cow life may be undesirable from an animal

1Example events that are not death but would result in an immediate removal would be an animal
sustaining a serious injury, becoming lame, developing an incurable disease, or failing to conceive. These
events, together with death, are collectively referred to as “involuntary culling” in the dairy science literature
(Fetrow et al., 2006).
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welfare perspective and can actually increase GHG emissions from the dairy sector (Oltenacu

and Broom, 2010; Weiske et al., 2006). This research provides the first empirical verification

of the costs incurred from unplanned mortality as a result of declining health to elucidate

the consequences of declining animal health for the profitability of US dairy.

Using the Euler equations in conditional choice probability (ECCP) method, I calculate

how costly unplanned mortality is on Wisconsin dairies using empirical replacement decisions

while considering a range of motives, including technological progress. I find that the costs

of unplanned mortality explain early replacement and vary across herd sizes. My estimate

of 2,300 USD is 1,300 USD higher than the upper bound of De Vries (2013) and is even

higher on farms with less than 250 cows (3,800 USD). The results are not consistent with

technological progress in dairy genetics being a significant factor explaining high rates of

replacement, in contrast to what is usually claimed about dairy farm replacement behavior

(De Vries, 2017). While asset failure and depreciation is often discussed as a motive in asset

replacement (e.g. Burt (1965)), this research demonstrate that this kind of asset failure has

a large bearing on replacement behavior in the case of dairy where managers must reduce

production downtime by anticipating when assets will be taken out of production. I calculate

that dairy farmers would be willing to pay 130 USD on average to insure their newest animals

against unplanned mortality, implying they perceive the unplanned mortality “indemnity”

for first-year animals at about 1,900 USD (500 USD higher than the price of a new heifer

in the same time period). These results suggest that improving animal health and longevity

could generate significant cost savings for dairy farmers.

Using farm size heterogeneity, I also calculate the model parameters for different sizes of

dairy farm. I find that dairies with less than 250 cows perceive unplanned mortality costs

to be as high as 3,800 USD per death, which is nearly three times higher than the cost

of unplanned mortality on dairies with more than 500 cows. Since the costs of unplanned

mortality are in large part caused by the down time incurred when a replacement is not lined

up, these results can be explained by that fact that larger farms can keep more replacement
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animals on hand and can fill vacancies faster than small dairies. These large discrepancies in

cost suggest that breeding for production over health may have the unintended consequence

of disproportionately hurting the profitability of small farms, which in turn may further

contribute to the consolidation of the dairy industry seen in recent years (Shepel, 2019).

In addition to informing policy, this paper contributes to the literature on asset replace-

ment by flexibly incorporating permanent asset heterogeneity and improving out-of-sample

CCP estimation using machine learning. This analysis first improves on previous studies

which are only able to control for across firm heterogeneity by controlling for within firm

heterogeneity. Recent advances in CCP methods, specifically the Euler equations in condi-

tional choice probabilities (ECCP) method of Scott (2013) and Aguirregabiria and Magesan

(2013), allow estimation of dynamic discrete choice models that can incorporate fixed effects

by using discrete analogs of Euler conditions. In my structural model, the Euler condition

generates estimates of the cost of unplanned mortality, annual maintenance costs, the pa-

rameters of the production function, and also the cow-specific fixed effect. I also improve on

previous studies that estimate CCPs with a bin estimator by instead using the random forest

algorithm. The random forest algorithm has the advantage of efficiently choosing bins for

continuous variables and theoretically improving model efficiency by balancing the in-sample

and out-of-sample properties of the probability prediction (Boström, 2008).

The paper proceeds as follows. In Section 2, I review the literature on asset replacement,

especially as it relates to replacing dairy cows. I then explain the theoretical model in

Section 3 and how I can use data on dairy cow replacement decisions to back out the

perceived loss in profit from unplanned mortality using the ECCP method, which I explain in

Section 4. Section 5 explains the data used, and Section 6 presents the structural parameters

estimated from the data. Section 7 uses these parameters to estimate the willingness-to-

pay to eliminate unplanned mortality completely across cow ages and farm types using

compensating variation. Section 8 concludes with the policy implications of these results

and directions for future research.
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2 Literature Review

This paper contributes to a very long tradition in economics of analyzing asset replace-

ment problems. Asset replacement, a special class of the “optimal stopping problem,” was

analyzed as early as 1849 when German forester Martin Faustmann developed the “Faust-

mann criterion” for determining the optimal harvest age of a forest (Newman, 2002). With

advances in methodology, especially the nested fixed point algorithm of Rust (1987), the eco-

nomics literature has transitioned away from estimating optimal replacement rules towards

using data to estimate the parameters that rationalize observed replacement behavior (Cho,

2011; Rothwell and Rust, 1997; Schiraldi, 2011).

With the exception of Miranda and Schnitkey (1995), studies of dairy cow replacement

have not made this transition. While the literature on optimal dairy cow replacement rules

is expansive, the majority of studies use simulations to calculate costs rather than empirical

models. These models represent the “normative” approach to asset replacement, where the

parameters of the problem are assumed, and a dynamic program is solved to recover the

optimal culling rule. Attempting to estimate the optimal replacement policy for dairy cattle

dates back to Stewart et al. (1977), whose paper in the Journal of Dairy Science explicitly

modeled and solved the decision using dynamic programming. The state variables included

the age of the cow, its body weight, its milk production, and its butterfat production.

Subsequent models were more complex and gave less attention to economic incentives and

more attention to modeling the underlying biological processes of the dairy cow production

system such as milk production (Rogers et al., 1988b; Stewart et al., 1977), fertility (Kalantari

et al., 2010; Rogers et al., 1988a) and the incidence of disease (Bar et al., 2008; Heikkilä et al.,

2012). Despite the complexity of these models, they often produce prescriptions that are

different than the replacement behavior of actual dairy farmers. The majority of these

models estimate that 20%-30% of the herd should be culled each year, though the culling

rate is usually higher than 30% (De Vries, 2013; Hadley et al., 2006).

One contribution of this paper is to investigate whether unplanned mortality costs on
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dairy farms explain this discrepancy. The first and only paper to take this approach to

dairy cow replacement is Miranda and Schnitkey (1995), where the authors find that a large

component of the gain from replacement is unexplained by their model. They hypothe-

size that annual costs that are linear in animal age are responsible for early replacement,

but for all farms in their study this parameter is statistically insignificant. Instead, the

alternative-specific constant for the replacement decision, which is the location parameter of

the distribution of the unobserved state ε, is large and significant compared to other factors

in the model. They theorize that this constant represents factors not explicitly modeled in

their profit function, including genetic progress and unseen costs of replacement.

This paper builds on their results by 1) incorporating unplanned mortality as one of their

“unseen costs” and 2) controlling for permanent, within firm heterogeneity using the ECCP

method. The possibility of asset failure is a salient feature of asset replacement models,

especially for replacing dairy cows given how frequent unplanned mortality is (Burt, 1965;

Smith, 1973). Asset failure is particularly important in dairy cow replacement because new

dairy cows, called “heifers,” must be bred ten months before they can be used to replace

another cow. The production down time for a dairy farm is minimized when dairy farmers

can plan when the current occupant leaves and breed accordingly; unplanned mortality

occurs when the current cow leaves ahead of schedule, which will cause lost profit when the

stall remains empty until the new cow is ready. In industries where replacements can be

procured and put into production immediately asset failure is less likely to affect replacement

behavior, but in dairy farming the risk of assets suddenly depreciating is likely to be a large

factor in replacement decisions if failure is costly.

In fact, a number of simulations show that the costs of unplanned mortality could be

quite substantial for dairy farms. Stott (1994) estimates the costs of infertility using dynamic

programming models to help quantify the value of the trait in the selection index; the study

arrives at about 25 USD per year per cow as a lower bound and about 100 USD as an upper

bound. Heikkilä et al. (2012) also use dynamic programming to calculate the cost of early
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exit due to mastitis as around 660 USD per exit in Finland. De Vries (2013) estimates the

average cost of “involuntary disposal,” which includes all of these factors, as 500-1,000 USD

per exit in the United States when not considering lost production. These costs are estimated

from simulations, however, and not from data. Thus far there is no empirical verification of

these costs from actual data, making it impossible to know how costly this kind of health

event actually is. By estimating these costs directly from dairy cow replacement decisions,

this paper both helps explain the results of Miranda and Schnitkey (1995) and provides an

empirical estimate of the total cost of unplanned mortality from the perspective of dairy

farmers.

This paper also improves on previous analyses of asset replacement by incorporating per-

manent, unobserved asset characteristics into the dynamic discrete choice framework via the

ECCP method. A threat to identification in these models is the possibility of unobserved

asset attributes that can bias parameter estimates, and this is especially so for studying the

replacement of animals. In general, the role of within firm heterogeneity in management is

usually ignored when studying firm behavior, which is a critical error when studying man-

agement of genetic technology (Bloom et al., 2019; Bloom and Van Reenen, 2007). Unlike

other industries, each asset on a dairy farm is genetically unique and likely to have idiosyn-

cratic characteristics that would influence decision making. Most asset replacement models,

however, assume that assets are homogenous within a firm (Adda and Cooper, 2000; Cooper

et al., 1999). Since dairy farmers typically know these genetic traits and the researcher does

not, not controlling for these differences in assets can result in biased parameter estimates.

To control for this heterogeneity, many papers use mixture distributions which can only

control for a pre-specified number of “types” ((Arcidiacono et al., 2016; Arcidiacono and

Miller, 2011; Scott, 2013)) Conditional logit models can condition out this heterogeneity,

but then cannot incorporate these effects into counter-factual estimation. In this paper, I

use the the Euler equation conditional choice probability (ECCP) method which can esti-

mate cow-specific fixed effects and then incorporate these effects into compensating variation
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Figure 1

(Aguirregabiria and Magesan, 2013; Scott, 2013). This analysis is a critical step forward in

studying the replacement of assets because it is robust to asset heterogeneity that has been

ignored in previous analyses and can factor this heterogeneity in to welfare analysis.

To accurately estimate the costs of unplanned mortality from replacement decisions using

these methods, I develop a theoretical model that explicitly embeds the risk of mortality in

the manager’s replacement decision. In the next section, I describe the model and how I

recover cost and production function parameters to investigate the causes of replacement

from data.

3 Theory Model

In this theoretical model, I examine the case where a dairy farmer maximizes expected cur-

rent and future profits of a cow stall which at time t contains a cow with age at. Throughout

the paper, the state at refers to the number of producing years the cow has spent in the herd,

measured in year long “lactations,” as opposed to number of years old (see Figure 1). The
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cow has an annual production function y(at), which is the yield for that entire production

year. As production is only a function of age, this model holds all other decisions concerning

annual production fixed.2

I adopt the standard assumption that the dairy farm operates at full capacity, due to

the fact that fixed costs on dairy farms usually make it suboptimal to leave a stall empty

(as Miranda and Schnitkey (1995) argues).3 Formally stated, this model assumes that a

manager always fills a stall rather than keep it empty:

Assumption 1. Fixed extensive decision: the option to leave a stall empty for a year is

always dominated by keeping a cow or replacing a cow.

This implies the manager is faced with a binary decision every year: keep the current cow

or buy a replacement with producing age one. Specifically, the manager chooses it ∈ {0, 1},

where it = 1 is sell the current cow and buy a replacement and it = 0 is keep the current

cow. Once the decision is made, either the current cow is bred so that it will produce again

in ten months or the replacement heifer is bred so that is can replace the current cow in

ten months. As Figure 1 shows, this breeding must occur so the dairy cow can begin its

next lactation cycle. Since dairy cow lactation cycles are about one year long, this occurs

two months into the current cycle in preparation for the next cycle. The farmer, being an

expected profit maximizer, considers the difference in expected returns between the current

cow a year older and a new cow in its first production year. The expected price of output is

pt and the expected cost of replacement is ct. If the current animal is replaced, the expected

revenue for the next production cycle will be pty(1)− ct.
2This assumes no variable intensity of use for the asset, which is general standard when studying dairy

farming culling behavior (Miranda and Schnitkey, 1995; Smith, 1973). This assumes that there are a fixed
number of feed inputs that support milk production, and that the manager views them as fixed throughout
the year.

3This is due to the fact that fixed costs almost always exceed variable costs on dairy farms. Because of
this, it is not often the case that profit margins are so low from milk production that it is more profitable
to take a guaranteed loss. In fact, fixed costs can be so high that dairy farms in many cases will respond to
drops in price by expanding their herd size rather than increasing it (Atwood and Andersen, 1984).
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3.1 The Role of Unplanned Mortality

Without unplanned mortality, the payoff from deciding to continue with the current animal

is pty(at + 1). However, it is common for a dairy animal to be to exit unexpectedly either 1)

before the annual return is realized (dies while giving birth) or 2) in the middle of its next

production cycle. This event is most likely in the first 120 days of their cycle when the animal

is weakest, meaning if an animal is removed then most of the year’s revenue is not realized.

Instead, a new animal must be purchased, meaning the age of the animal regenerates back to

one unexpectedly. An animal dying, however, incurs costs that would not have been incurred

had the animal been replaced. These costs include the cost of disposing of the carcass, the

costs of treating a sick animal that ultimately dies, and lost production.

I model these costs from unplanned mortality as a “penalty,” α, which is added to the cost

of replacement when the replacement is unplanned.4 When the animal has to be removed,

the next period’s return is pty(1) − ct − α. The probability that an animal survives to the

next period is S(at). The payoff function for the decision is thus:

R(at, pt, ct, it) =


pty(1)− ct it = 1

S(at)
(
pty(at + 1)

)
+ (1− S(at))

(
pty(1)− ct − α

)
it = 0.

The manager now has an incentive to replace the animal to avoid paying α. The current

period return from replacement, that is R(at, pt, ct, it = 1)−R(at, pt, ctit = 0), would be:

(1− S(at))α + S(at)
(
pty(1)− pty(at + 1)− ct

)
. (1)

4Note that this is independent of production; there are good arguments for making the penalty term
proportional to the expected output (some percentage of production is lost). I model it here more simply
as independent of production so that the cost can encompass non-production related losses such as disposal
costs or health treatment costs.
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If S(at) = 1 for all ages, which is to say that all exit is planned, then α does not affect the

decision to replace. Managers replace the current cow when pty(1)− pty(at + 1)− ct > 0, or

when the marginal return from replacement exceeds the replacement cost. However, consider

the case where the probability S(at) is decreasing in age (intuitively, older cows are more

likely to have to be removed), or at least decreasing after some point. As age progresses,

α will get larger and the previous criterion will get smaller; intuitively, the growing risk of

the cow exiting prematurely over time eclipses any marginal return from keeping the current

cow.

As an illustration, consider the parametric example in Figure 2 using a quadratic, concave

functional form for y(at). The survival probability is modeled as a variant of the Weibull

hazard rate function and is monotonically decreasing as age increases. The payoffs with and

without asset failure are graphed in red and blue.

Figure 2: Payoffs
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The blue line shows that under no unplanned mortality the optimal policy is to replace at

about age five, about two years after the production function is maximized (β1/2β2 = 3.125).

However, with the penalty, the optimal replacement age is two years younger, at about three,

because the risk of incurring mortality cost is too high. The only case when the assets will be

replaced at the same time regardless of output price or replacement cost is when α = 0. The

payoff with unplanned mortality also has a smaller slope with respect to age; this is due to the

effect of S(at) on the other states, which decrease in importance as age increases. Because of

this difference in curvature, even small increases in α will cause a large discrepancy between

the optimal culling rules.

This simple example illustrates why a model that does not incorporate unplanned mortal-

ity will have a large, positive “culling premium.” If, as in the case of Miranda and Schnitkey

(1995), we were to estimate model where S(at) = 1 for all ages, there would need to be an

intercept adjustment for the discrepancy between the curves in Figure 2. Thus, including

the penalty α in the model can potentially explain the culling premium found in Miranda

and Schnitkey (1995).

In addition to unplanned mortality, there are other motives for replacing dairy cows

at young ages. Three of these motives that I include in the model are maintenance cost,

asset performance, and technological progress. Miranda and Schnitkey (1995) claim that

maintenance costs of aging cattle that are linear in age can explain early replacement. If

these costs are included, age affects the current-period payoff linearly through maintenance

cost and also non-linearly through the transition probability S(at). To compare the Miranda

and Schnitkey (1995) model to the one I develop here, I include the same linear maintenance

cost function M(at) = γat in the payoff. Another motive for early replacement is observed

asset performance, which I model this by including an additional state: the production

shock ηt. This state is the deviation from the asset’s expected performance, y(at), which

captures other aspects of productivity not explained by age. This state, like age, is influenced

by the choice it. When the asset is not replaced, the next cycle’s shock ηt is drawn from
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ηt ∼ N(ρηt−1, ση), where ρ is an autocorrelation coefficient. When the asset is replaced, η is

expected to be zero, or ηt ∼ N(0, ση). Since shocks are correlated across time, relatively poor

performance in one period may cause a cow to be replaced to stop the shock from carrying

over to the next period.

Finally, technological progress in dairy cow genetics may provide an incentive to replace

old cows with new ones since newer dairy cows may be more productive. This is often a

key feature of asset replacement models in industries where asset performance is improving

over time (Bethuyne, 1998; Cho, 2011; Perrin, 1972). When each new generation of asset is

more productive, there may be a large opportunity cost to using the current asset instead

of replacing it with a new one. In the case of dairy, genetic improvement has caused dairy

cow milk yield to be almost linearly increasing over the past fifty year (Thornton, 2010). For

this reason, genetic improvement has been the most cited explanation for why dairy farmers

have an incentive to replace cows early (De Vries, 2017; Miranda and Schnitkey, 1995; Smith,

1973). I model this by including a time trend in the payoff for replacement, which allows the

payoff from replacement to grow linearly over time. This trend is expected to be positive

and significant if expectations of technological progress play a role in culling decisions.

3.2 The Dynamic Model

The manager’s full, dynamic decision problem is represented by an infinite-horizon, dynamic

program, with discount rate δ ∈ [0, 1). The Bellman equation for the optimization problem

is:

V (xjt, zt) = max
ijt∈{0,1}

R(xjt, zt, ijt) + ε(ijt) + δE(V (xj,t+1, zt+1)|xjt, zt, ijt) (2)

where xjt ≡ (ajt, ηjt) and zt ≡ (pt, ct) are cow-level states and market-level states respectively

for cow j in period t.5 In addition to including the value function V in the payoff, there

5Assuming that the prices pt and ct are exogenous is equivalent to assuming that dairy farmers are price
takers. This is generally true for dairy farms, especially dairy farms in Wisconsin, where very few farms keep
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is an additional state ε that represents the influence of states not observed in the data. In

what follows, I assume:

Assumption 2. Conditional independence: the transition of states x and z are conditionally

independent of ε.

Assumption 3. Additively separable type 1 extreme value: the error ε is additively separable

in the payoff and is distributed type 1 extreme value.

Assumption 2 is common in models of this type (e.g. (Rust, 1987)). Hotz and Miller

(1993) argue that ε satisfies conditional independence by construction if R represents an

ex-ante payoff,and so ε is unobserved, expectational noise. The power of this assumption is

that it frees us from having to take an integral over V with respect to ε, instead integrating

only over the states xjt and zt. Assumption 3 implies that the probabilities have a logit

form, which permits the derivation of a closed form expression for estimating the model

parameters. It also implies a closed-form expression for the differences in value functions,

which is detailed in the next section.

The transition functions for the exogenous states pt and ct are modeled as normally

distributed random variables that are AR(1). The shock distribution is similarly modeled

as normally distributed with variance σ2
η. For the transition of age, at always transition

to 1 if ijt = 1, but otherwise returns to 1 with probability 1 − S(ajt) and transitions to

ajt + 1 with probability S(ajt). This implies that the continuation value when ijt = 0 is

a weighted combination of V̄1(xjt, zt) = E(V (xj,t+1, zt+1)|xjt, zt, it = 1) and V̄0(xjt, zt) =

E(V (xj,t+1, zt+1)|xjt, zt, ijt = 0). When entering the “unplanned mortality” state of nature,

the value function evolves as if a new asset was purchased.

Taking shocks and maintenance cost into account, the payoff function can be rewritten

as:

more than 200 cows, so market power is very dispersed.

15



R(xjt, zt, it) =


τt+ pty(1)−M(1)− ct ijt = 1

S(ajt)
(
pty(ajt + 1) + ρηjtpt −M(ajt + 1)

)
+ ijt = 0.

(1− S(ajt))
(
pty(1) + ρηjtpt −M(1)− ct − α

)

where M(at) = γat, y(ajt) = β0 + β1ajt + β2a
2
jt, {xjt, zt} = {ajt, ηjt, pt, ct}

I now include the effect of maintenance costs, production shocks, and a time trend τ . The

shock ηjt always affects the payoff when ijt = 0; this is to take into account the fact that

asset failure can have repercussions related to the previous cycle’s performance.6 Using the

shorthand Sjt = S(ajt), I now write the difference in current-period payoffs as:

R(xjt, zt, ijt = 1)−R(xjt, zt, ijt = 0) =µ+ τt+ α(1− Sjt)− ρηjtpt − Sjtct + γSjtajt

− (β1 + 2β2)Sjtajtpt − β2Sjta
2
jtpt (3)

R(xjt, zt, ijt = 1)−R(xjt, ijt = 0) =θX

where θ =
(
µ, τ, α,−ρ,−1,−γ,−(β1 +2β2),−β2

)
is the parameter vector and X =

(
1, t, 1−

Sjt, ηjtpt, Sjtct, Sjtajt, Sjtajtpt, Sjta
2
jtpt) is the data matrix. Here µ is the difference in means

between ε(1) and ε(0), which is the “culling premium” from Miranda and Schnitkey (1995).

It contains benefits to choosing to replace that are unexplained by the other factors in the

model. Knowing the current period payoff, the next step is to take into account the effect

that today’s replacement has on the future stream of profits. In the next section, I use the

inversion theorem of Hotz and Miller (1993) to derive the difference in value functions as a

function of replacement probabilities and derive an estimating equation using derivations in

6To make the shock transmit only in the case of survival, we need only multiply the term ηjtpt by the
survival rate Sjt in the regression equation that follows.
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Table 1: Model Summary

Endogenous States (xjt) ajt Age
ηjt Production shock

Exogenous States (zt) pt Output price
ct Replacement cost

Controls ijt ∈ {0, 1} Replacement
decision

Technology y(ajt) = β0 + β1ajt + β2a
2
jt Total milk output at age ajt.

M(ajt) = γajt Maintenance cost function.
S(ajt) Survival rate

P (aj,t+1 = 1|ijt) =

{
1 ijt = 1

1− S(ajt) ijt = 0
Evolution of ajt

P (aj,t+1 = ajt + 1|ijt) =

{
0 ijt = 1

S(ajt) ijt = 0

Payoff, R(xjt, zt) µ+ τt+ pty(1)− γ − ct If ijt = 1

S(ajt)
(
pty(ajt + 1) + ρηjtpt − γ(ajt + 1)

)
+ If ijt = 0

(1− S(ajt))
(
pty(1) + ρηjtpt − γ − ct − α

)
Parameters β1, β2, γ Production and cost parameters

δ ∈ [0, 1) Discount factor
ρ Shock correlation
τ Time trend
α Cost of unplanned mortality
µ, λ Location and scale of error term
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Aguirregabiria and Magesan (2013) and Scott (2013).

4 Methodology

When δ > 0, the decision to replace also takes into account the effect that replacement has

on future decisions, which is

∆V (xjt, zt) = E(V (xj,t+1, zt+1)|xjt, zt, 1)− E(V (xj,t+1, zt)|xjt, zt, 0).

Rust (1987) develops an approach for estimating this factor, which is to solve a value function

iteration problem to find V ∗(xjt, zt) across all states, calculate ∆V (xjt, zt), and include it

in the maximum likelihood estimation. The problem is computationally burdensome since

∆V (xjt, zt) is also a function of parameters θ, so in any optimization routine the value

function iteration must be done for each new likelihood calculation for a candidate estimate

of θ.

Instead of using Rust’s nested fixed-point method, I use the CCP estimator derived

by Hotz and Miller (1993) and extended by Arcidiacono and Miller (2011). Define the

probability of taking action k conditional on endogenous states xjt and exogenous states zt

as the “conditional choice probability,” Pk(xjt, zt). Also denote the transition probabilities

for x and z as fx and fz.

Finally, define the “conditional value function,” the payoff from choosing action i and act-

ing optimally from then on, as v(xjt, zt, ijt). Using this notation, their recursive relationship

is given by:

v(xjt, zt, ijt) = R(xjt, zt, ijt) + δE(V̄ (xj,t+1, zt+1)|xjt, zt, ijt) (4)

where V̄ is the “ex ante” or “unconditional” value function where every decision after the

one in the current period is made optimally and so does not depend on ijt.
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According to Lemma 1 of Arcidiacono and Miller (2011), there is a function ψ such that

ψ(xjt, zt, it) = V̄ (xjt, zt)− v(xjt, zt, ijt). Now, using the function ψ we can substitute V̄ into

Equation 4:

v(xjt, zt, ijt) = R(xjt, zt, ijt) + δE(v(xj,t+1, zt+1, k) + ψ(xj,t+1, zt+1, k)|xjt, zt, ijt)

where k is an arbitrary choice. The reason k can be any given choice is that the term ψ will

essentially “penalize” the returns if this is not the optimal action (Arcidiacono and Miller,

2011; Hotz and Miller, 1993).

Hotz and Miller (1993) show that Assumption 3 implies that ψ(xjt, zt, k) = .577 −

ln(Pk(xjt)) (.577 being Euler’s constant), where Pk(xjt) is the CCP of taking action k.

The most useful choice of k is k = 1, which assumes that all cows are replaced next period,

in order to exploit the principle of “limited dependence.” Limited dependence is a special

feature of models that involve a “renewal decision,” which is a decision that resets one of the

states so that previous actions have no further effect on the future. In this case, replacing a

cow renews the state ajt back to 1, and if the cow is replaced at t+ 1 then there will always

be a new cow at t+ 2 that is unaffected by decisions in t.7

If k = 1, then the difference in value functions v(xjt, zt, ijt = 1) − v(xjt, zt, ijt = 0) is

only a function of the payoffs in period t and t+ 1, since the decision is identical from t+ 2

onward. The resulting difference in value functions is

7See the example of Aguirregabiria and Magesan (2013) for a specific application to dairy cattle replace-
ment.
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v(xjt, zt, 1)− v(xjt, zt, 0) =R(xjt, zt, 1)−R(xjt, zt, 0)

+ δ
(
E(R(xj,t+1, zt+1, 1)− ψ(xj,t+1, zt+1, 1)|xjt, 1)

− E(R(xj,t+1, zt+1, 1)− ψ(xj,t+1, zt+1, 1)|xjt, 0)
)

=R(xjt, zt, 1)−R(xjt, zt, 0)

+ δ
Z∑

zt+1=1

X∑
xj,t+1=1

(
R(xj,t+1, zt+1, 1)− ψ(xj,t+1, zt+1, 1)

)
(
fx(xj,t+1|xjt, 1)− fx(xj,t+1|xjt, 0)

)
fz(zt+1|zt). (5)

Recalling that ψ(xjt, zt, k) = .577− ln(Pk(xjt)), this reduces to:

v(xjt, zt, 1)− v(xjt, zt, 0) =R(xjt, zt, 1)−R(xjt, zt, 0)

+ δ
X∑

xt+1=1

Z∑
zt+1=1

(
R(xt+1, zt+1, 1) + lnP1(xt+1, zt+1)

)
(
fx(xt+1|xjt, 1)− fx(xt+1|xjt, 0)

)
fz(zt+1|zt),

after noting that I can factor out fz because, being comprised of only exogenous states, it

is not affected by the decision ijt.
8 To calculate the relative payoff from replacing, given by

v(xjt, zt, 1) − v(xjt, zt, 0), I need only the CCPs across different states, P1(xjt, zt), and the

difference in transition probabilities, f(xt+1|xjt, 1)− f(xt+1|xjt, 0). To have identification, I

also normalize one payoff to zero (Magnac and Thesmar, 2002). In this case, I choose to

normalize the payoff from replacement to zero, which is equivalent to subtracting R(xjt, zt, 1)

from both payoffs. Recalling that S(ajt) = f(ajt + 1|ajt, 0) and 1− S(ajt) = f(1|ajt, 0), the

8Also note that it is now easier to see why ψ “penalizes” the payoff when P1 6= 1; if P1 < 1, then ψ < 0,
but the payoff is unchanged if P1 = 1.
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final expression for ∆V (xjt,zt) is

∆V = FV1 + S(at)FV2 where (6)

FV1 =
Z∑

zt+1=1

E∑
ηt+1=1

(
lnP1(1, ηt+1, zt+1)

)
(
fη(ηt+1|ηt, 1)− fη(ηt+1|ηt, 0)

)
fz(zt+1|zt)

FV2 =
Z∑

zt+1=1

E∑
ηt+1=1

(
lnP1(1, ηt+1, zt+1)− lnP1(at + 1, ηj,t+1, zt+1)

)
(
f(ηt+1|ηt, 0)

)
fz(zt+1|zt)

(see Appendix A for derivation).

Using a first-stage estimate of P1, I now include FV1 and S(at)FV2 as two additional

regressors in the model to proxy for the continuation value after estimating the transition

probabilities fη and fz.

4.1 First-Stage Estimation

The above is a two-step estimator: first calculate the CCP P̂ , and then estimate the re-

gression equation. The first step, however, requires calculation of P̂ , both in-sample and

out-of-sample. Unfortunately, I need to observe all combinations of ages, production shocks,

and prices to have accurate estimates of P1 across all states. A common way to estimate P1

is to use some kind of bin estimator (Scott, 2013) or a logit model with several combinations

of the state variables used as predictors (Arcidiacono and Miller, 2011). The first method

requires making judgements on the size of the bins, which can be difficult when states are

fully continuous (as in my case here with output price pt and replacement cost ct). The sec-

ond method does not require choosing bins, but tends to need many combinations of state

variables to fit well in-sample, which makes the out-of-sample fit worse due to over-fitting.
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I choose to predict P1 using a random forest algorithm as a compromise between these

two methods for the following two reasons. First, a random forest model prevents the

econometrician from having to choose bins, as it essentially selects the bins using cross-

validation. Many of the hyper parameters in a random forest, such as the number of leaves

or the minimum sample on a leaf, are essentially changing the bin size. It is therefore a

more sophisticated bin estimator that frees the econometrician from having to choose bins

for continuous variables. When a random forest model is trained using a Brier-score loss

function, it delivers the desired probabilities of replacement rather than doing classification

(Boström, 2008).

Second, using a method with cross-validation prevents the model from over-fitting and

causing poor out-of-sample performance. A logit model with many combinations and poly-

nomial expansions of state variables, as recommended by Arcidiacono and Miller (2011), is a

classic example of a model that will over-fit; it will produce accurate in-sample probabilities

but will do poorly at predicting combinations of ages, shocks, and prices that are not seen

in the data. This will produce inaccurate estimates of ∆V , in particular. To address this, I

deploy a machine learning approach that will correct for overfitting.

I also need to estimate the transition probabilities fz and fη in the first stage using an

AR(1) regression where the error is normally distributed. I use the same regression to find

flow probabilities for production shock η, though here the data for η comes from data on the

animal’s milk production. Specifically, I use the milk production model in Kearney et al.

(2004) to predict milk yield for a given animal; the residual for each lactation is my estimate

for η. This proxies for the production shock in the structural model because the production

of the animal is net of any observable predictor of milk production on the farm. Since the

milk production model uses herd fixed effects, the residual is actually its deviation from

the herd average. I believe this is a good approximation of a “deviation” from its expected

return from the perspective of the manager. More information about the milk production

model is given in Appendix B.
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Finally, the survival probability Sjt is estimated from the data based on the percentage

of cows at each age that exit the herd in the first 120 days of their lactation. Due to age

being a discrete variable, there is no reason for any parametric assumption. The literature

on dairy cow culling calculates the probability of “involuntary exit” for each age (see, for

example, Stott (1994) and Van Arendonk (1985)). In this particular application, I assume

that the shape of Sjt is exogenously imposed. While it is known that the manager’s actions

can have an effect on the rates of exit, it is not clear from that dairy farm managers actually

treat this as a choice variable. Management actions that have an effect on cow death and

infertility are broad structural changes that cannot be changed in the short run. We can

allow for shifts in the level of Sjt at all ages using fixed effects, while still assuming that the

decrease in Sjt between ages is common to all animals.

4.2 Second-Stage Estimation

To estimate θ, I assume a value for the parameter δ to give enough degrees of freedom (see

Arcidiacono and Miller (2011) for an explanation of when δ is identified). Given an estimate

of the survival probability Sjt, I have the following reduced form logit model that maps to

the structural coefficients:

P (ijt = 1|xjt, zjt) =
eλθX+δ∆V

1 + eλθX+δ∆V
. (7)

The parameter λ is the scale parameter of the distribution, and is identified as the coefficient

on the term Sjtct because its coefficient in the structural model is −1. In order to interpret

the coefficients in dollar terms, I divide through by λ. The reduced form coefficients, after

dividing through by λ, are

X =
(

1, 1− Sjt, ηjtpt, Sjtct, Sjtajt, Sjtajtpt, Sjta2
jtpt

)
θ/λ =

(
µj, α,−ρ,−1, γ,−(β1 + 2β2),−β2

)
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θ1 = µ θ2 = α θ3 = −ρ

θ5 = γ θ6 = −β1 − 2β2 θ7 = −β2

So now I can recover the structural parameters:

µ = θ1 α = θ2 ρ = −θ3

γ = θ5 β1 = θ6 − 2θ7 β2 = −θ7

Note that here θ1 is essentially estimating the “willingness to pay” for a lower mortality rate,

1− Sjt. In this structural model, this is equal to the cost of mortality, α.

In contrast to previous work, specifically that of Miranda and Schnitkey (1995) and

Aguirregabiria and Magesan (2013), I do not estimate the parameters of the production

function from outside the structural model. Instead, the production function parameters

β1 and β2 are identified off of interactions between age, survival rate, and the output price.

Were the parameters to be estimated with milk production data and then plugged into

the model, this would be assuming that the econometric estimates are the parameters the

manager assumes. Unfortunately, this ignores the fact that a cow’s milk production curve

may be perceived differently by the manager than what could be discovered from a regression.

For example, the farmer may have information about the cow’s production curve under their

own management that would not be uncovered with an econometric regression. The manager

may also have a different notion of when an animal’s milk production is maximized. This

approach allows any of these possibilities to be true but changes the interpretation of β1 and

β2: they are no longer the parameters of the “empirical” production function, but rather

the parameters of the “perceived” production function from the perspective of the manager.

To understand the “perceived” production function, I also calculate the age of maximum

production a∗ = − β1
2β2

= θ5−2θ6
θ6

. If a∗ differs from what is estimated from empirical models,

this is evidence than manager’s expect a different production function than the one calculated

from dairy cow testing data.

Estimating θ using maximum likelihood, unfortunately, cannot incorporate permanent,

unobserved asset heterogeneity without conditioning out the cow effects altogether. While
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this would control for cow genetics when estimating θ, it does not allow calculation of

marginal effects or counterfactual calculations with these genetic effects. To overcome these

limitations, I use the ECCP method which can flexibly incorporate fixed effects in the es-

timation equation. This method has been implemented using GMM (Aguirregabiria and

Magesan, 2013) and OLS (Scott, 2013) by utilizing moment conditions. Taking logs of both

sides of Equation 7 gives the following moment condition:

Xθ − 1

λ
(δ∆V + ∆ν) = 0, (8)

where ∆ν = ln
(
P (it=1|xjt,zt)
P (it=0|xjt,zt)

)
. Scott (2013) rearranges the above moment condition to get a

regression equation:

Xθ − 1

λ
(δ∆V + ∆ν) = 0

δ∆V + ∆ν = λXθ

δ∆V + ∆ν = λXθ + ξ̃

Ỹ = λθX + ξ̃ (9)

s.t. Ỹ = δ∆V + ∆ν.

The regression equation is given by the reduced form expression:

Ỹjt =µj + τt+ α(1− S(ajt))− ρηjtpt − S(ajt)ct+

γS(ajt)ajt − (β1 + 2β2)S(ajt)ajtpt − β2S(ajt)a
2
jtpt + ξ̃jt.

Note that with this method I do not have to condition out fixed effects, and so obtain

estimates of µj for every animal in the dataset. I can can use Equation 7 and our estimate

of θ to construct counterfactual estimation of probabilities without assuming the fixed effect
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is zero.

Unobserved benefits to replacement that are time variant now manifest in a regression

error, ξ̃. Scott (2013) argues that ξ̃ is actually a compound error term, one part expectational

error and one part “unobservable shock”; the first of these is arguably uncorrelated with the

information known to the manager, instead having to do with the evolution of exogenous

market variables. The second component is likely not exogenous to payoffs, however, and so

needs to be addressed.

4.3 Endogeneity and Identification

There are two main concerns for endogeneity when estimating θ: herd environment and

unobserved health information. Thomsen and Houe (2006) show that herd environment

affects the survival rate; more intensive dairies, for example, generally have higher rates of

exit. Since management intensity (e.g., number of times milked or type of feed used) is not

in the model, this can confound estimates of α and other parameters. I assume that cows

can have different levels of survival rate but that their survival rate as a function of age has

a common curvature:

Assumption 4. Exogenous survival rate curvature: the curvature of the survival rate S with

respect to age is fixed from the perspective of the manager and is the same across all farms.

I assume that heterogeneity in the perception of survival rate across farms comes only

from linear shifts in the curve at the farm level. This means that farms can have differing

survival rates provided they are linear shifts in the rate at every age. There is no evidence

one way or the other in the literature about how dairy farmers perceive the survival rate,

but it seems likely that dairy farmers would not have radically different ideas of how survival

decreases with age.

Unobserved health information is also a source of endogeneity that manifests at the animal

level. A farmer may observe something about one animal that updates the probability of
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survival while at the same time affecting replacement. There is no explicit “health state”

in the model that captures this information, meaning it would instead show up in ε. If

the health states are fixed across the animal’s lifestyle, we can use cow-level fixed effects to

control for this confounding factor. This will omit all cows that do not survive past their

first lactation, which is appropriate given first year cows being culled are a special case of

culling. These cows are usually sold in their first lactation, alive, to generate income. This

sort of culling is not the focus of this analysis, as it is not culling initiated with a replacement

in mind. In the analysis that follows, I default to cow-level fixed effects.

Finally, neither of the above fixed-effects methods deal with health shocks, which would

affect both survival and replacement. One example is the onset of a disease that is unobserved

in the data but observed by the manager. One proxy measure of such an event found in the

data is somatic cell count (SCC), which is a measure of the bacteria count in the milk. SCC

is usually monitored closely by managers because a high SCC indicates the onset of mastitis,

the most common lactating dairy cow disease. SCC is available from the data but is not

currently modeled here; arguably this measure produces just as many endogeneity problems

because SCC is also correlated with certain management practices. For now, I use SCC to

check the model results for robustness by including it as a variable in the regression. This

checks the predictive power of SCC in the model and also the effect of including it on other

parameter estimates. More information on robustness checks are available in the Appendix

C.

5 Data

To estimate the model parameters, I use cow-testing records from Dairy Herd Improvement

(DHI) herds in Wisconsin served by one Dairy Records Processing Center representing 90%

of the DHI herds in the state; DHI herds represent roughly half of total dairy farms in

Wisconsin. DHI Associations are producer cooperatives established in the early 20th century
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U.S. to collect information on dairy cow production for benchmarking of individual cows and

whole herds. Herds that are a member of DHI have records collected every month on their

cows’ milk production, including fat and protein yield, as well as somatic cell count (SCC)

and breeding decisions. All cows in a given milking herd have records collected monthly, so

when a cow exits the milking herd it also exits the data.

The data covers the period from June 2011 to January 2015. It includes data on roughly

150,000 cows across 1,285 herds, totalling 355,734 lactation records. I look specifically at

lactation-level records, which record the total fat and protein during the lactation. The

raw data contains many more herds than the 1,300 included in my sample, but these were

dropped from the analysis based on three criteria. One, herds had to have at least 40 milking

cows at any given point in the data. Two, herds had to have been observed from June 2011

up until December 2014 (making a balanced panel). Three, herds could not have large

fluctuations in herd size; I dropped herds whose herd size had a coefficient of variation of

more than one.9 For animal-level records, lactations above five or six are routinely omitted

(Pinedo et al., 2014; Weigel et al., 2003) because of survival bias; animals that live to be that

long are usually extraordinarily good at producing milk and do not represent a typical cow.

Including these records would also cause issues with studying replacement, because the rate

of culling for those animals is usually either zero or one. I include animals up to lactation

eight, which cuts out only about 1% of the data.

5.1 Exit Rates

A dairy cow “exit” occurs when a dairy cow leaves the dataset. In this data, if a dairy

cow leaves the dataset less than six months before the end of the sample time frame, the

observation is considered to be right censored rather than an exit. Figure 4 shows the rate

of exit for cows that are uncensored on average and also across herd size. No cows that exit

9Herds have wildly fluctuating herd size when there is an issue collecting data on all the cows, so these
herds are omitted. A certain amount of leeway is allowed in the herd size because herd size can fluctuate
even when dairy farms are not actively scaling up or down. Herd size can fluctuate temporarily, for example,
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Record Counts
Herds 1,285
Cows 151,722
Cows (not Right Censored) 60,248
Lactation Records 355,734

Figure 3: Record Counts and Herd Sizes

the data at their first lactation are considered in this analysis, and so their exit rate at the

first lactation is zero. The exit rate jumps to about 40% in their next lactation, however.

While dairy cow milk output is maximized at about lactation three or four, only about half

of the cows make it to this age. Across herd size, there are not significant differences in exit

rates, although a slightly smaller percentage of cows exit at the first lactation on smaller

farms.

In this dataset, we also know whether or not a dairy cow was bred. Breeding is an

important decision to observe because it also determines whether or not a cow produces

next year. If the cow is not bred, then it will eventually leave the milking herd when its

production cycle ends. Figure 4 shows the rate at which cows are bred. While exit rates

are fairly homogenous across dairy farm size, breeding rates are slightly more heterogeneous

across herd size. For larger farms, a slightly higher percentage breed more of their cos in the

because a replacement is being purchased or is not quite ready from the replacement herd.
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Figure 4: Percent Exiting/Bred at Each Lactation
(Uncensored Cows Only)
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first four lactations. Larger farms may have an advantage in the fact that they can afford

to inseminate in more cases without concern for cost, whereas smaller farms may have to be

more prudent in their breeding decisions.

Herd testing data often does not explicitly note whether a cow exit is planned or un-

planned, so a combination of data on exit rates and breeding decisions is used to determine

whether a cow was explicitly replaced or kept. Figure 5 explains the criteria for using breed-

ing decisions to determine whether a cow was “replaced.” First, if the cow is observed in its

next production cycle than it considered kept, or ijt = 0. If the cow is not observed in its

next production cycle, it is considered replaced if two more criteria are met. First, the dairy

must not be bred. If the cow is bred but does not appear in the next cycle, the observation is

marked missing and is instead considered an unplanned exit.10 If the dairy cow is not bred,

it must also be the case that it is observed in the herd after 120 days and is absent from

the data before the end of the sample (and so is not right-censored). The dairy cow must

be observed in the first 120 days because it may be the case that the cow died before it was

able to be bred, and so does not constitute a replacement. Since most unplanned mortality

occurs in the first four months, all exits happening in this time period are used to construct

the survival probability Sjt.

5.2 Survival Rate

To get an estimate of Sjt from the data, I estimate the percentage of exits that happen in

the first four months of a cow’s lactation at each age. Dairy cows are most prone to health

shocks during this period, and it is usually not profitable to voluntarily sell an animal in this

period.11 Figure 6 shows exit rates less than or more than 120 days in milk (DIM), which

10The costs of breeding are high enough that it is uncommon for a dairy cow to be bred with the intention
of being slaughtered. Instead, these cows may be bred for the purposes of selling to another farm, an
economic decision that is not the focus of this model. These sorts of decisions are usually categorized as
outside of the farm’s primary occupation of producing milk (Fetrow et al., 2006).

11Dairy cow milk production is the highest in the first four months of production, and selling a cow during
before it finishes its cycle is generally not profitable. The costs of sustaining a cow through the calving period
and breeding are high enough that dairy farmers aim to keep cows through their whole year long lactation.
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Figure 5: Flow Chart for “Breeding” Replacement Definition

Is the dairy cow observed at its next cycle?

Yes No

Not Replaced
it = 0

Was the dairy cow bred?

YesNo

Records censored?

No Yes

Missing
it = NaN

Observed after 120 DIM?

No Yes

Replaced
it = 1

Missing
it = NaN

Missing
it = NaN

is the number of days since the cow has calved. This calculation includes the first lactation

cows in order to calculate the probability of unplanned exit for all ages.

The unplanned exit rate, which is one minus the exit before 120 DIM, has a “bath tub”

shape, meaning that the failure rate is higher in the first year than in the second year,

but increases after the second year. This is similar to the calculated failure rate for many

mechanical components in operations research, and reflects the fact that cows in their first

lactation are generally at higher risk for health issues than older cows. The rate estimated

in this data is similar to the rate of “involuntary culling” from other studies of unplanned

mortality in dairy cows, which suggests it is a good approximation of Sjt for this analysis.

5.3 Market Prices and Shocks

In my model, expected revenue R is a function of a “profit-margin” state pt, replacement

cost ct, and “revenue shock” ηjtpt. For these two prices, I use income-over-feed-cost (IOFC),

a measurement of the profit margin from producing one pound of milk “at test.”12 This

12The IOFC measurement is the return from producing one pound of milk with “average component
values” for a given area (in this case Wisconsin). It includes feed cost, labor cost, and capital cost, and
generally reflects the “average profitability” of producing one pound of milk. See Gould and Cabrera (2011)
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Figure 6: Exit Rate Decomposed and Compared to Literature Involuntary Rates
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Figure 7
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measure of milk profitability is important to producers because it is the one used for USDA

price support programs (Gould and Cabrera, 2011). The replacement cost is calculated as

the salvage value of a 1,400 pound dairy cow minus the market price for a new heifer. Prices

are de-seasonalized, which makes the assumption that dairy farmers seasonally adjust their

expectations about price. Because dairy cow replacement is not seasonal in Wisconsin, it is

unclear which part of the year dairy farmers observe prices and form expectations. Here I

assume adaptive expectation for the expected return R, which means that managers value

next period’s expected revenue at the most recent prices. To calculate FV , I assume the

probability of next period prices to be derived from from an AR(1) regression using the

de-seasonalized prices. Figure 8 shows the price trends before and after seasonal correction

from the data.

I calculate the production shock ηjt from a milk production model, described in Appendix

B. The objective of the model is to calculate the performance of the cow relative to its herd

mate, taking into account lactation number, lactation length, and milking intensity. The

“shock” portion of the production function is calculated as the residual from this regression

for details of calculation.
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Figure 8: Price Trends Adjusted and Unadjusted for Seasonality
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model. Because the covariate in the model is actually ptηjt, I calculate the residual for both

fat and protein, multiply them by that lactation’s latest Class III component prices, and

sum them together. Descriptive statistics of the calculated revenue shocks can be found in

Appendix B.

6 Results

Below I estimate the structural model developed in the previous section using the ECCP

method. Standard errors in all models are estimated as the standard deviation of 1,000

bootstrap replications. I use regression weights in all calculations to take into account the

fact that the accuracy of FV decreases in regions of the state space with few observations. I

weigh observations less if the particular combination of states is not seen often in the data.

In all models, the discount rate is fixed at .99 unless otherwise specified. The tables present

the structural parameters, which are nonlinear combinations of the reduced form parameters.

To interpret the coefficients in dollar terms, I divide by the scale λ, which represents the

“marginal utility of money” (since the coefficient of Sjtct is −1 in the model). The estimate

of λ is presented in all tables at the bottom. I finish this section by estimating the model

on different herd-size categories to explore heterogeneity in unplanned mortality cost across

farm types.

6.1 First-Stage Estimation

The first-stage estimation of FV proceeds in three steps. First, the transition probabilities

fx and fz are calculated from data on prices and shocks. Second, the CCP P1 is calculated

on every combination of states after being trained on the sample. Finally, FV is derived

by taking the expectation over P1 using the derived distribution of p, c, and η. A random

forest algorithm is used to prevent over-fitting and assure good out-of-sample properties for

the prediction of P1.
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State Transitions I use the following equations to estimate the distributions of pt, ct and

ηt assuming that the error term is normally distributed:

pt = µp/(1− ρp) + ρppt−1 + υp, υp ∼ N(0, σ2
p)

ct = µc/(1− ρc) + ρcct−1 + υc, υc ∼ N(0, σ2
c )

ηt = µη/(1− ρη) + ρηηt−1 + υη, υη ∼ N(0, σ2
η)

The predictions are done using monthly data that was de-seasonalized and CPI adjusted.

Table 2 presents the results of these regressions, as well as the results of an AR(1) regression

to estimate the initial value of ρ to use in the state transitions for η.

Table 2: AR(1) Regressions for State Transitions

η p c

µ 37.14 7.88 314.87
(0.001) (1.41) (49.46)

σ 758.01 1.01 55.63
(0.92) (0.11) (0.97)

ρ 0.373 0.952 0.830
(0.002) (0.047) (0.125)

No. Obs. 405,467 44 44
Note: standard errors are in parentheses

Conditional Choice Probabilities The random forest algorithm was trained using Brier

score loss and 10-fold cross-validation. Figure 9 shows the performance of the random forest

estimator in-sample as compared with the empirical probabilities, which are the average

replacement rates at each lactation number. The biggest deviation in performance for the

random forest is at higher ages given the small number of observations at that level (which

comprise less than 1% of the data).
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Figure 9: CCP In-Sample Predictions

Brier Score: 1
NT

∑T
t=1

∑N
j=1(P̂ 1

jt − ijt)2

Flexible Logit Random Forest
Brier Score 0.1818 0.1778

Note: lower Brier Score implies better performance.

The table in Figure 9 also compares the performance of flexible logit versus random forest.

When compared with flexible logit, the random forest performs better, but only marginally

so. The downside of random forest was its tendency to predict zeros and ones, which causes

a problem for estimation (since lnP1 is one of the covariates). Flexible logit, on the other

hand, did a better job of predicting probabilities other than zero and one in-sample, so it

was used for all in-sample probabilities. However, in simulations random forest performed

the best on out-of-sample estimations of P1, and so I use random forest estimates for the

calculations of FV .
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6.2 Second Stage Estimates

I estimate the model without unplanned mortality (the Miranda and Schnitkey (1995) spec-

ification), with a zero discount rate (a myopic decision maker), and two different discount

rates corresponding to a 5% and 1% interest rate. Table 3 shows the estimates using the

definition of replacement based on a combination of breeding and exit. Here the estimate of

α is about 2,300 USD per exit. As a benchmark, in the year 2011 the average market price

for a dairy heifer replacement was on average 1,400 USD (USDA-NASS, 2011). This cost is

also 1,300 USD higher than the upper range of the estimates that De Vries (2013) gives for

the cost of “involuntary culling.” The marginal cost is about 120 USD per year, which is

similar to the estimate of Miranda and Schnitkey (1995). The age at which cows maximize

production is in line with the empirical production function calculated in Appendix B, and

the production shock correlation ρ is closer to the first stage estimate of 0.37.

The time trend is estimated as negative, which means that over time farmers were more

likely to keep their cows. This is not consistent with genetic progress being a motivating

factor in animal replacement, the often cited explanation for aggressive replacement policies

on dairy farms (De Vries, 2017; Miranda and Schnitkey, 1995; Smith, 1973). Over time,

managers are more likely to hold on to their current cows, in direct contradiction with

the challenger-versus-defender model of asset replacement and technological progress. This

result is robust to using an alternative time trend based on cow birth year, suggesting this

is a robust feature of the decision and not a fluke of the data (see Appendix C for more

details).

The ECCP model also estimates a distribution of cow-specific fixed effects. These effects

are individual “replacement premiums” for each animal and are presented in Figure 10 over

age. My hypothesis was that including unplanned mortality would help explain the large,

positive intercept for replacement found in Miranda and Schnitkey (1995). When introducing

unplanned mortality into the model, the distribution of fixed effects noticeably shifts to the

left. This provides evidence that the large and positive intercept in their model can be
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Figure 10: Fixed Effects Distribution over Age
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Table 3: Structural Model Results

No Mortality Mortality Risk Mortality Risk Mortality Risk
δ = 0 δ = .95 δ = .99

Time Trend τ -21.98 -12.82 -16.38 -16.64
(0.86) (0.40) (0.69) (0.71)

Penalty α 1,911.50 2,330.74 2,371.84
(70.80) (116.10) (115.30)

MC γ 132.33 299.47 127.35 114.84
(10.90) (7.93) (10.25) (10.42)

Shock ρ 0.405 0.226 0.333 0.341
Correlation (0.0113) (0.0040) (0.0087) (0.0092)

Age of Max − β1

2β2
3.83 2.35 3.55 3.60

(0.026) (0.021) (0.022) (0.023)

Scale λ 0.0014 0.0029 0.0017 0.0017
(0.00004) (0.00004) (0.00004) (0.00004)

Observations 355,734 355,734 355,734 355,734
Adjusted R2 0.215 0.462 0.242 0.234

Bootstrapped standard deviations in parentheses

explained by the costs of unplanned mortality. These unobserved traits are likely genetic

factors that only the manager observes, yet are factors taken into account in replacement

decisions. Note that these premiums are independent of observed performance, already

captured in the state η. The large variance in effect also shows the importance of controlling

for this kind of unobserved heterogeneity when modeling the replacement of assets that are

as heterogeneous as dairy animals.

Additional robustness checks are found in in Appendix C, including using different lev-

els of fixed effects, using an alternative time trend, and including somatic cell count as a

covariate. Using only herd level fixed effects resulted in a lower estimate of α, indicating

that animal-level effects had significant effects on the decision rule and on the estimation of

the unplanned mortality cost. When using a time trend based on the year the animal was

born instead of the month of observation, the time trend still had a negative effect on the

propensity to replace dairy cows. Older cows are more likely to be kept, suggesting that

accelerating progress in dairy genetics does not explain high replacement rates. Finally, in-

41



cluding somatic cell count as a proxy for health shocks affects the probability of replacement

but does not not meaningfully change the parameter estimates.

6.3 Heterogeneity across Herds

To analyze the heterogeneity in unplanned mortality cost across farm type, I estimate the

model on different herd-size categories Table 4 shows estimates the model on different cate-

gories of herd size to determine whether the model’s results change significantly across herd

type.

Table 4: Structural Model Estimates Across Farm Type

Less than 100 100 to 250 250 to 500 500 to 1000 More than 1000

Time Trend τ -21.87 -19.93 -18.32 -13.50 -13.92
(2.10) (1.91) (1.65) (1.60) (1.51)

Penalty α 3,795.79 3,616.42 2,062.43 1,367.64 2,152.54
(394.86) (359.54) (258.39) (286.25) (220.61)

MC γ 166.38 134.18 153.340 101.39 62.02
(30.40) (27.43) (24.49) (24.02) (20.74)

Shock ρ 0.440 0.411 0.364 0.319 0.206
Correlation (0.0347) (0.0284) (0.0211) (0.0216) (0.0103)

Age of Max − β1

2β2
3.99 3.82 3.45 3.38 3.45

(0.063) (0.057) (0.048) (0.055) (0.044)

Scale λ 0.0011 0.0013 0.0016 0.0018 0.0028
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Observations 74,161 85,127 86,684 59,135 50,627
Adjusted R2 0.178 0.206 0.269 0.260 0.223
Bootstrapped standard deviations in parentheses
Discount rate set to .99

Farms with less than 250 dairy cows perceive an unplanned mortality cost nearly three

times higher than farms with between 500 and 1000 cows: 3,800 USD per exit versus 1,360

USD per exit. Farms with between 250 and 500 dairy cows pay about 3,600 whereas the

largest dairy farms, which make up a very small percentage of herds in this data, pay about

2,100 USD. Taking 1,400 USD as an average market rate for a dairy cow, only farms with 500
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to 1000 cows perceive the cost to be about the market rate of a replacement heifer. There are

a few possible explanations for this discrepancy across herd size. One, large farms may benefit

from economies of scale in dealing with the costs from unplanned exits. This cost savings

can be from disposing of animal carcasses more efficiently or having lower costs of treating

diseases. The cost may also be lower if large farms are able to keep more replacements on

hand, which lowers the search cost when a cow unexpectedly leaves the herd or even reduces

the amount of time that a stall is empty. In contrast, small farms may have less replacements

on hand, meaning a slot cannot be filled as quickly because replacements are harder to find.

Regardless of the source of the cost, small dairies in this sample pay disproportionately more

per death than large dairies, which suggests that reductions in animal health in favor of

production may disproportionately affect the profitability of small dairies.

7 Welfare Analysis

The parameter α represents the added cost to replacement induced by an unplanned mor-

tality event. As a counterfactual exercise, we can examine the price farmers would pay

to eliminate mortality risk completely. Earlier, I showed how including Sjt distinguishes

this model from that of Miranda and Schnitkey (1995). The payoff with and without the

probability of unplanned mortality is:

θ0X0
jt = µ+ τt+ α(1− Sjt)− ρηjtpt − Sjtct + γSjtajt

− (β1 + 2β2)Sjtajtpt − β2Sjtta
2
jtpt + δ∆V 1

jt + δ∆V 2
jtSjt

θ1X1
jt = µ+ τt+ ρηjtpt − ct + γajt

− (β1 + 2β2)ajtpt − β2a
2
jtpt + δ∆V 1

jt + δ∆V 2
jt

Since θ1X1
jt is the payoff a manager receives when every cow will survive to the next lac-

tation if it is not replaced (Sjt = 1 ∀ ajt), the willingness-to-pay to eliminate unplanned
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mortality is the amount of money that would need to be given to a farmer to make them

indifferent between a payoff function with health risk (θ0X0
jt) and a payoff without health

risk (θ1X1
jt). This is a more comprehensive estimate of mortality cost than α because it takes

into account the effects of Sjt on the entire payoff function. This number is analogous to the

premium of an insurance policy for unplanned mortality.

Assuming that λ is the same for every farmer, the average compensating variation for

transitioning to this payoff function is:

E(CV (X1, X0, θ1, θ0)) =
1

λ

(
ln(1 + e−θ

1X1
jt)− ln(1 + e−θ

0X0
jt)
)
,

which is derived in Small and Rosen (1981).13 The relationship between this compensat-

ing variation measure and α can be described by this partial derivative:

∂E(CV )

∂α
= (1− Sjt)P0(xjt, zt).

The extent to which compensating variation increases with increasing in α is determined

by the probability of the event (1−Sjt) and the probability the farmer wants to keep the cow

(P0(xjt, zt). If the cow were definitely going to die (Sjt = 0), and the manager were definitely

going to keep the cow (P0 = 1), then a one-dollar increase in α increases compensating

variation by one dollar. Anything that increases the probability of keeping the animal will

also increase E(CV ). E(CV ) can be thought of as the premium for an insurance policy

for animal mortality, and dividing this by the probability of the event (1 − Sjt) gives an

expected “indemnity” for unplanned mortality that is more comprehensive than the penalty

parameter α. Because the ECCP method recovers estimates of the cow-specific intercepts,

the fixed effects can be incorporated in the calculation of E(CV ) (unlike conditional logit).

This captures the ability of managers to see characteristics about cows that are unobserved

in the model, giving us a sense for their importance in determining how managers value

13Recall also that I fixed the payoff to replacement to be zero having subtracted the payoff from replacement
from both payoffs, so −θ1X1

jt is the payoff from keeping the animal
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Figure 11: Compensating Variation
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unplanned mortality.

In Figure 11 I graph the expected CV over the whole sample. On average, managers would

insure their cows for 130.26 USD per lactation. First lactation cows have the highest CV,

which follows as managers would pay more to insure dairy cows that have more producing

potential. The implied indemnity of an unplanned death (E(CV )/(1 − Sjt)) for a new

cow is about 1,900 USD. Unobserved cow characteristics influence the willingness to pay to

eliminate risk significantly. A subset of older cows in particular elicits a high E(CV ), since

cows kept this long have unobserved traits that prompt them to be kept longer. Broken out

by herd size, the same pattern emerges as in Table 3. Farms with less than 250 cows would

pay the most to eliminate mortality, almost three times more than farms with between 500

and 1000.
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Table 5: Average Indemnity by Age

Percentiles
Mean Std Dev Count 2.5% 50% 97.5%

Age
1 1975.13 171.27 100,090 1705.29 1952.98 2,248.56

2 1484.27 196.79 127,813 1,163.14 1,529.68 1,826.88

3 1062.27 238.25 70,437 693.44 1,094.19 1,478.75

4 767.35 220.89 34,127 409.82 745.15 1,134.47

5 693.97 306.54 14,877 293.33 664.83 1,386.93

6 772.06 339.43 5,826 359.66 681.58 1,552.97

7 891.17 410.40 1,988 383.10 795.12 1,863.20

8 1227.35 636.85 576. 481.72 1,119.06 2,675.44

Table 6: Average Indemnity for New Cows, by Herd Size

Mean Std Dev 2.5% 50% 97.5%
Herd Size
Less than 100 2,434.78 567.57 1,267.55 2,487.20 3,408.60

100 to 250 2,640.18 457.15 1,884.86 2,659.11 3,353.25

250 to 500 1,160.75 456.91 161.80 1,193.53 1,892.32

500 to 1000 657.35 418.90 -253.26 694.28 1,305.05

more than 1000 1,977.15 556.78 1,469.33 1,866.96 3,458.29
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8 Discussion and Conclusion

Using a structural dynamic discrete choice model, I examine asset replacement behavior

on Wisconsin dairy farms and the effect of asset failure and depreciation on dairy cow

replacement. Replacing dairy cows is unique in asset replacement since new replacements

have to be procured ten months ahead of time, meaning premature dairy cow exit can

cause significant costs to the operation. I test the hypothesis that costs arising from this

“unplanned mortality” can explain why dairy farms replace cows before it is considered

optimal from the perspective of most models. I derive a dynamic discrete choice model

that explicitly incorporates the probability of unplanned mortality as a replacement motive

and backs out a cost parameter representing profit losses from unplanned mortality due to

declining animal health. The analysis finds that the cost of unplanned mortality is 2,300

USD per exit, and is even larger on small dairies. I used the estimates of these fixed effects to

calculate expected compensating variation that takes into account unobserved cow variation,

which finds that dairy farmers would, on average, pay 1,900 USD to eliminate mortality risk

completely. My results suggest that part of the discrepancy between optimal culling rules

calculated from simulations and observed replacement decisions is explained by the fact that

simulations underestimate the cost of unplanned mortality. In addition to shedding light on

this empirical puzzle, the results have significant implications for the debate around dairy

sector profitability and the role of animal health.

First, this analysis finds large disparities in mortality cost across herd size. Farms under

250 dairy cows pay roughly three times more per death, and these dairies are also willing

to pay nearly three times more to eliminate mortality risk completely. These results suggest

that small dairy farms may be disproportionately paying the cost of the current trends in

animal health. Since the costs of unplanned mortality are likely related to the capacity to

hold replacements on hand, other technologies may be limited in their ability to bring this

cost down. Milk production has been prioritized in breeding to increase the profitability

of dairy, but if smaller farms pay more of the downside then this breeding strategy could
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have unforeseen distributional effects. In fact, such a breeding strategy may inadvertently

contribute to the increased consolidation of the dairy industry if it causes small farms to exit

at higher rates (Shepel, 2019).

A second policy implication is that improving animal health at the cost of production

could actually increase profitability of dairy in some cases. In fact, this analysis demon-

strates that improving animal health grants even more cost savings than previously assumed

(De Vries, 2013). This suggests that there is, as De Vries (2017) argues, policy rationale for

investing in a technology that balances health and production. Increasing cow life-span also

has the potential to address the negative environmental externalities caused by short cow

life and also improve animal welfare (Garnsworthy, 2004; Oltenacu and Broom, 2010).

By using actual replacement decisions, my research calibrates these costs not by simu-

lations but by the actual behavior of dairy farmers. In the language of Rust (1987), this is

an example of a “bottom-up” approach to understanding some of the aggregate trends in an

industry like dairy. Thanks to advances in dynamic discrete choice, this analysis can be done

more efficiently and more rigorously, controlling for a broader ranger of heterogeneity than

possible before. Advancements in machine learning also enhance dynamic discrete choice

estimation by simplifying and improving the estimation of first-stage probabilities over state

spaces that are fully continuous. Thanks to such advancements, these kinds of models can

produce insights into firm behavior and perspectives on policy at a level of empirical rigour

never before possible.
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Appendix A Future Value Calculation

v(xjt, 1)− v(xjt, 0) = R(xjt, 1)−R(xjt, 0) + δ
X∑

xt+1=1

(
R(xt+1, 1) + ln(P1(xt+1), 1)

)
(
f(xt+1|xjt, 1)− f(xt+1|xjt, 0)

)

The last term multiplied by δ is what I call ∆V , and I derive it below. Remembering that

all the states evolve independently of one another and only at and ηt depend on it, we can

factor the probabilities out this way:

f(xt+1|xjt, 1)− f(xt+1|xjt, 0) =
(
f(at+1|at, 1)f(ηt+1|ηt, 1)−

f(at+1|at, 0)f(ηt+1|ηt, 0)
)
f(zt+1|zt)

When considering at, recall that at is a discrete state that can only transition to at+1 = 1

or at+1 = at + 1; the age must either go up by one or go back to 1, so it sufficient to only

consider the cases where at+1 = at + 1 or at+1 = 1 when calculating the expected value.

Because of unplanned exit, the probability of transitioning from age at back to age 1 is:

f(at+1 = 1|at, it) =


1 it = 1

1− S(at) it = 0

And that the probability of at going to age at + 1 is:

f(at+1 = at + 1|at, it) =


0 it = 1

S(at) it = 0

The shock state ηt is also dependent on the decision to replace. Recall that shocks are
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auto-correlated with coefficient ρ but only in the case that the cow is not replaced; should

the cow be replaced, the performance of the previous cycle does not affect the new occupant.

Now I calculate the difference in transition probabilities for at+1 = at + 1 and at+1 = 1.

f(1, ηt+1|at, ηt, 1)− f(1, ηt+1|at, ηt, 0) = (1)f(ηt+1|ηt, 1)− (1− S(at))f(ηt+1|ηt, 0)

= f(ηt+1|ηt, 1)− (1− S(at))f(ηt+1|ηt, 0)

f(at + 1, ηt+1|at, ηt, 1)− f(at + 1, ηt+1|at, ηt, 0) = (0)f(ηt+1|ηt, 1)− S(at)f(ηt+1|ηt, 0))

= −S(at)f(ηt+1|ηt, 0))

Now back to calculation of ∆V , first ignoring the states pt and ct since they are not

influenced by the decision:
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∆V =
X∑

xt+1=1

(
R(xt+1, 1) + ln(P1(xt+1)

)(
f(xt+1|xjt, 1)− f(xt+1|xjt, 0)

)
=

E∑
ηt+1

(
R(1, ηt+1, zt+1, 1) + ln(P1(1, ηt+1, zt+1)

)
(
f(ηt+1|ηt, 1)− (1− S(at))f(ηt+1|ηt, 0)

)
−

E∑
ηt+1

(
R(at + 1, ηt+1, zt+1, 1) + ln(P1(at + 1, ηt+1, zt+1)

)(
S(at)f(ηt+1|ηt, 0))

)
=− S(at)

E∑
ηt+1

(
R(at + 1, ηt+1, zt+1, 1) + ln(P1(at + 1, ηt+1, zt+1)

)(
f(ηt+1|ηt, 0)

)
+

E∑
ηt+1

(
R(1, ηt+1, zt+1, 1) + ln(P1(1, ηt+1, zt+1)

)(
f(ηt+1|ηt, 1)

)
−
(

1− S(at)
) E∑
ηt+1

(
R(1, ηt+1, zt+1, 1) + ln(P1(1, ηt+1, zt+1)

)(
f(ηt+1|ηt, 0)

)
=S(at)

E∑
ηt+1

(
ln(P1(1, ηt+1, zt+1)− ln(P1(at + 1, ηt+1, zt+1)

)(
f(ηt+1|ηt, 1)

)
+

E∑
ηt+1

(
R(at+1 = 1, ηt+1, zt+1, 1) + ln(P1(1, ηt+1, zt+1)

)(
f(ηt+1|ηt, 1)− f(ηt+1|ηt, 0)

)

Applying the normalization R(xjt, 1) = 0 and using the shorthand P1(at, ηt, pt, ct) =

P1(at, x̃t), I can write:

∆V =S(at)
Z∑

zt+1=1

E∑
ηt+1=1

(
lnP1(1, x̃t+1)− lnP1(at + 1, x̃t+1)

)
fη(ηt+1|ηt, 1)fz(zt+1|zt)

+
Z∑

zt+1=1

E∑
ηt+1=1

(
ln(P1(1, x̃t+1)

)(
f(ηt+1|ηt, 1)− fη(ηt+1|ηt, 0)

)
fz(zt+1|zt)

So now I have factored out the survival function S(at) so that I only can estimate its

parameters inside the main model. The other state transitions, however, still have to be
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estimated separately. Note that the value FV1 has to do with the fact that shocks are

correlated, since when ρ = 0 then f(ηt+1|ηt, 1) = f(ηt+1|ηt, 0) and FV1 = 0, whereas FV2 is

an adjustment term for the change in the probability of replacing next period if replacement

is done today.

Appendix B Milk Production Model

One of the covariates in our model is ηjtpt, the shock in revenue from the current cycle. To

get an estimate of ηjt, the deviation from the production function, I do a linear prediction

of fat and protein yield for each cow using their covariates. The covariates Wjt come from

similar models estimated in animal science production models on DHI data (see Kearney

et al. (2004) as an example).

The prediction model:

yjt = βWjt + hj + ηjt

Contained in Wjt:

� Lactation number

� Lactation number squared

� Proportion Days Milked 3x

� Lactation Length (DIM)

� Calving Month

� Birth Year

� Age at first calving

and hj is a herd intercept. I then predict the residual η̂jt = yjt − β̂Wjt − ĥj for fat and

protein and multiply them by their Class III component prices prevailing in the month the

record was taken.
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Table 7 shows the results of the milk production model. Calculated from this production

function, the optimal lactation number at which production is maximized is around three to

four, which is in line with Miranda and Schnitkey (1995). This indicates that another reason

dairy cows are replaced earlier than typically calculated by simulations is that production is

maximized much sooner than five lactations. The birth year effects show something akin to

genetic progress in milk production; independent of all factors, cows that were born in more

recent years have higher milk production.

Figure 12 shows the calculated revenue shock over age. As can be seen in the confidence

intervals, they are highly variable and are not statistically different than zero for any age.

The variation in this variable is high, reflected in the fact that the standard deviation is

about 600 USD. The correlation between shocks is 0.37, implying a mild autocorrelation

between lactations.

Appendix C Robustness Checks

C.1 Different Levels of Fixed Effects

Below I estimate the ECCP model with different levels of fixed effects. Using no fixed

effects, the cost of unplanned mortality is significantly lower: about 600 USD per exit as

opposed to 2,300 USD. The estimate is almost unchanged when using herd fixed effects,

which suggests herd level heterogeneity does not have a large effect on the estimation of

unplanned mortality cost. In these specifications, the maintenance cost γ is twice as large

as in the main specification, which could mean that without animal-level effects the costs

are attributed to unit increases in age rather than the identity of the cow. When including

animal-level intercepts, the results change significantly: the shock correlation is lower, and

the cost of unplanned mortality is almost four times higher. Since the shock correlation

appears to be too high without animal-level effects, the animal-level effects model appears

to fit the data better (even though the R-squared is lower).
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Figure 12: Revenue Shock by Age

Percentiles
Mean Std Dev Count 2.5% 50% 97.5%

Age
1 -110.75 584.87 322,842 -1,297.59 -105.55 1,040.42

2 136.05 676.23 241,250 -1,171.22 120.21 1,538.50

3 64.81 730.42 153,147 -1,307.91 40.48 1,589.48

4 -40.32 746.20 83,689 -1,445.45 -60.69 1,522.15

5 -80.61 724.43 39,950 -1,477.22 -86.83 1,394.08

6 -74.21 713.33 16,718 -1,498.12 -61.58 1,309.33

7 -19.51 725.10 6,217 -1,547.24 4.17 1,352.78

8 85.86 741.36 2,198 -1,490.17 132.89 1,442.50
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Table 7: Milk Production Model

Fat Yield Protein Yield Energy Corrected Milk
(ECM)

Lactation Number 66.852*** 69.778*** 2110.466***
(0.631) (0.444) (15.373)

Lactation Number Squared -10.973*** -9.686*** -321.745***
(0.057) (0.040) (1.401)

Proportion Milked 3x 99.577*** 76.034*** 2860.178***
(1.456) (1.024) (35.489)

Lactation Length 3.051*** 2.573*** 86.508***
(0.001) (0.001) (0.033)

Age in Years 53.974*** 33.396*** 1358.848***
(0.461) (0.324) (11.239)

Somatic Cell Score -0.121*** -0.060*** -3.009***
(0.001) (0.001) (0.026)

Birth Year
2006 34.405*** 30.421*** 945.791***

(0.984) (0.692) (23.993)

2007 65.036*** 57.995*** 1754.510***
(0.954) (0.671) (23.255)

2008 75.858*** 67.684*** 2037.064***
(0.969) (0.681) (23.612)

2009 89.866*** 78.058*** 2363.118***
(0.999) (0.703) (24.356)

2010 109.260*** 91.072*** 2807.903***
(1.037) (0.730) (25.284)

2011 110.927*** 94.334*** 2862.303***
(1.101) (0.775) (26.851)

2012 118.899*** 101.299*** 3101.160***
(1.238) (0.871) (30.183)

2013 101.899*** 90.072*** 2510.211***
(3.035) (2.135) (73.983)

Observations 1,172,293 1,172,293 1,172,293
Adjusted R2 0.86 0.90 0.89
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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These results show that controlling for these asset-level characteristics is important when

studying decisions like replacement. Were I to have used a model more in line with previous

studies, I would have only controlled only for herd level characteristics and would have

understated the cost of unplanned mortality by a significant amount. Including only firm-

level effects makes the implicit assumption that the permanent characteristics that affect

behavior are constant within a firm, which is not the case here. A dairy herd is a diverse

portfolio of genetic types, and in this data an individual cow’s characteristics have a large

effect on how parameters are estimated. Future economics studies examining management

of genetic technology such as animals or crop plots should take these sorts of factors into

account when estimating parameters from such data.

C.2 Other Checks

In this section I implement two extra robustness checks: including SCC as a covariate and

using an alternative time trend based on the year different cattle were born.

As mentioned previously, unobserved health shocks are a potential endogeneity issue

for estimating the coefficient on the hazard rate. Specifically, health shocks may affect

replacement and also update the probability of survival. The effects of health states on

productivity are already captured in the state ηjt, which uses somatic cell count (SCC), a

measure of milk bacteria count, in the production function. SCC is an important trait of

milk because high counts of SCC are indicative of mastitis, the most prevalent disease among

lactating dairy cattle. However, any effect of health states on replacement independent of

production is not captured in the model. To test the effect of SCC in the model, I explicitly

include it as a covariate. Note that this is making a very specific assumption about how SCC

affects replacement; by including it only as as covariate and not as a state, I am assuming

it affects next period’s payoff but not the continuation value. In Table 9, the coefficient on

SCC in the regression is positive, meaning cows with higher bacteria counts are replaced

more often, but the coefficient is quite small. A one standard deviation change in SCC,
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Table 8: Different Fixed Effects Specifications

No Fixed Effects Herd Fixed Effects Cow Fixed Effects

Premium µ -4799.08
(152.20)

Time Trend τ -26.75 -26.63 -16.64
(0.55) (0.53) (0.71)

Penalty α 587.566 651.007 2371.84
(147.25) (145.00) (115.30)

MC γ 270.12 265.98 114.84
(10.10) (10.13) (10.42)

Shock ρ 0.58 0.57 0.34
Correlation (0.02) (0.02) (0.01)

Age of Max − β1
2β2

3.76 3.76 3.60

(0.04) (0.03) (0.02)

Age of Free −β1+β2
β1

6.51 6.52 6.20

(0.07) (0.07) (0.05)

Scale λ 0.0009 0.0009 0.0017
(0.00005) (0.00005) (0.00004)

Observations 355,734 355,734 355,734
Adjusted R2 0.316 0.318 0.234

Bootstrapped standard deviations in parentheses

Discount rate set to .99
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which is 150, implies a change in expected profit of just three dollars. In addition, it does

not significantly change the estimate of α.

Another robustness check I implement is using an alternative time trend. In the main

specification, I used a simple monthly time trend to capture technological improvement

in replacements. My hypothesis was that the time trend would be positively related to

replacement since replacing now means taking advantage of new genetics. This is implied

by the challenger-versus-defender model of asset replacement, and is theorized in Miranda

and Schnitkey (1995) as the cause of the positive culling premium. In all specifications, I

find that the time trend is negative, the opposite of what was hypothesized. Rather than

being more willing to give up their cattle as time progresses, producers are less willing. The

monthly time trend, however, may be picking up another economic condition unrelated to

the technology. To test whether this negative time trend really has to do with the technology

itself, I use the birth year of the cow as an alternative measure. Instead of a one-unit increase

being one month, now a one-unit increase is one year, for example a cow born in 2009 versus

a cow born in 2010. The relationship is still limited to be linear, meaning the difference

between a 2011 cow and a 2012 cow must be the same between a 2009 and 2010 cow, but

the variation is now cow specific rather than time specific. In other words, it directly tests

whether a cow being born a year later is replaced more often.

The effect of the time trend remains negative and have an even larger magnitude than

the monthly trend. This confirms that the negative time trend has to do with the technology

itself. The milk production model in Table 7 shows there are higher returns in milk pro-

duction associated with increases in this variable, but producers from 2011 to 2014 wanted

to hold on to newer cows rather than replace them. The trend does not fit with the theory

that genetic progress is an increase in opportunity cost incentivizing dairy farmers to replace

earlier (De Vries, 2017). It instead suggests that newer dairy cows are being kept more, and

they do not expect the trend to continue.

From this robustness check, I conclude that the negative time trend is not a fluke of
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the data, but actually a robust result of the behavioral model in this data. Dairy farmers’

expectations of technological progress do not fit the typical challenger-versus-defender model

theorized by Miranda and Schnitkey (1995) and De Vries (2017). Future work should inves-

tigate the robustness of this result over longer time spans, as one limitation of this data is

that it only covers from 2011 to 2014. These results may be showing short-run expectations

about technological process and do not pick up long-run trends that could be explored with

a longer panel.
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Table 9: Other Robustness Checks

Main Specification SCC Shock Birth Year Time Trend

SCC Shock -0.0016
(0.0123)

Time Trend τ -16.64 -16.66 -180.52
(0.706) (0.708) (17.53)

Penalty α 2371.84 2372.36 2083.52
(115.30) (119.24) (136.35)

MC γ 114.84 115.16 -100.63
(10.42) (10.40) (3.60)

Shock ρ 0.34 0.34 0.41
Correlation (0.009) (0.009) (0.012)

Age of Max − β1
2β2

3.60 3.60 3.43

(0.023) (0.023) (0.022)

Age of Free −β1+β2
β1

6.20 6.20 5.86

(0.046) (0.046) (0.044)

Scale λ 0.0017 0.0017 0.0014
(0.00004) (0.00004) (0.00004)

Observations 355,734 355,734 355,734
Adjusted R2 0.234 0.230 0.234

Bootstrapped standard deviations in parentheses

Discount rate set to .99
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